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Abstract 
Systems on chips have both general-purpose microprocessors and custom blocks optimized for specific functions. 
In this paper, Altera APEX 20KE200 based SOC kit with Nios soft-core processor is considered for the 
implementation of JPEG encoder.  For an 8X8 matrix of image pixels, JPEG encoder is implemented in hardware 
as a custom block and its computation complexity is compared with that implemented using high level language.  
A number of optimization schemes are proposed for minimizing the computation time in the custom block. This 
includes employing the 13 multiplier Algorithm Architecture Transform (AAT) for 2D DCT computation, internal 
clock generation scheme which increases the speed of the custom instructions by 50% and use of memory read 
and write operations at different rates. A scheme for concurrent execution of the operations in the custom block 
and data transfer as well as other operations by the Nios core is also proposed.  From the implementation results, 
it is observed that for sub image of size 8X8, the hardware custom block is faster by a factor of twenty six 
compared to software implementation. The optimization schemes proposed in this paper are also applicable for 
the computation of other image transforms such as 2D DWT and encoders such as ITU H.263.  
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1 Introduction  

The ability to design, fabricate and test ICs 
with gate counts of the order of a few million has led to 
the development of complex embedded systems on 
chip. Design of System on chip (SOC) may be defined 
as the design of a complex IC, which integrates the 
major functional elements of a complete end product 
into a single chip or chip set. Hardware components in 
a SOC may include one or more processors, memories, 
and dedicated components for accelerating critical 
tasks, and interfaces to various peripherals. It may also 
include analog, RF, Micro-Electro-Mechanical 
Systems (MEMS) and optical input/output interfaces.  

One of the approaches for SOC design is the 
platform based approach. For example, the platform 
FPGAs such as Xilinx Virtex II Pro and Altera 
Excalibur include custom designed fixed 
programmable processor cores together with millions 
of gates of reconfigurable logic devices.[1]  In addition 
to this, the development of IP cores for the FPGAs for 
a variety of standard functions including processors, 
enables  a multi million gate FPGA to be configured to  
contain all the components of a platform based FPGA.   
Development tools such as the Altera SOPC builder 
enable the integration of IP cores and the user designed 

custom blocks with the soft-core processors such as the 
Nios processor. ([2], [3]) Soft-core processors are far 
more flexible than the hard-core processors and they 
can be enhanced with custom hardware to optimize 
them for specific application.  The technique for 
efficient implementation of the various blocks of JPEG 
encoder on the Altera APEX 20KE200 based SOPC kit 
is presented in this paper. 
 
2 An overview of JPEG encoder and its 
various blocks  

The block diagram of the JPEG encoder is 
given in Fig.1. Brief description about the technique 
used for the Discrete Cosine Transform (DCT) 
transform is given in this section. The details of the 
other blocks of the encoder may be found from [4],[5] 
[6]. The DCT and quantization are the most   
computation intensive tasks in the JPEG encoder and 
are desirable to be implemented in hardware. The 
zigzag scanning can be carried out using look up table 
and hence it is found to be efficient in hardware 
implementation by just swapping the memory contents. 
The rest of the blocks in the encoder may be 
implemented either in software or in hardware.   
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Fig. 1. Block diagram of the JPEG encoder 
2.1 Discrete cosine transform 

Discrete Cosine Transform (DCT) transforms 
the information in space or time domain to the 
frequency domain and has a number of desirable 
properties such as real transform coefficients, good 
energy compaction and availability of fast computation 
algorithms [7].  In view of these, it has been adopted in 
many compression and decompression standards such 
as JPEG, MPEG and H.263. In the JPEG encoder, the 
image to be compressed is split into 8X8 sub images 
and passed to the DCT block.  X(k), the kth transform 
coefficient of one dimensional DCT of a sequence x(n) 
of length M is given by                                                                      

 
  M-1 

X(k)   =  α( k ) Σ x(n) cos [(2n+1)kπ/2M            (1) 
                                        n=0 

The inverse transform coefficient x(n), the nth data in  
the sampled sequence, can be expressed in terms of the 
DCT coefficients as follows: 
         
                          M-1 

x(n) = (1/M)  Σ    α( k ) X(k) cos [(2n+1)kπ/2M]   …(2) 
                k=0    
 where   α( k )   = 1 / √ 2       if k = 0  
                         =  1                  k ≠ 0 
 
The 2D DCT of the 8X8 image block is computed, first 
by computing the 1D DCT of each row of the matrix 
and then computing the 1D DCT of the resulting 
matrix along the column.  VLSI implementation of 
discrete cosine transform has been studied in a number 
of previous works. [7],[8],[9]. In this paper, DCT 
computation using Algorithm-Architecture Transform 

(AAT) structure shown in Fig.2, is considered [8]. The 
8-point DCT architecture derived using this technique, 
reduces the number of multiplications from 56 to 13. 
 
3. System design using SOC kit 
3.1 An overview of the SOC kit  

System on chip (SOC) kit used for the 
implementation of 2D DCT is based on Altera® 
APEX20K200E device and is pre-loaded with a 32-bit 
Nios embedded processor system reference design. The 
Nios system module (CPU and peripherals) typically 
occupies between 25% to 35% of the logic elements on 
this device and the remaining logic elements can be 
used for the implementation of user defined custom 
blocks. Nios development software supplied with this 
kit includes a Quartus® II project directory containing 
reference design examples.  

The reference design and software are 
preloaded in flash memory, and boot on power-up. The 
reference design software includes a monitor that can 
be used to download and debug programs. With SOPC 
builder, designers can select and parameterize 
intellectual property (IP) block  from an extensive list 
of communication, digital signal processing (DSP), 
microprocessor, interface cores, and common 
microprocessor peripherals.  

SOPC builder integrates complex system 
components such as IP blocks, memories, 
microprocessors, and interfaces to off-chip devices 
including ASSPs and ASICs on Altera's high-density 
FPGAs. SOPC builder also saves designer’s time by 
automatically generating software to match the target 
hardware 
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Fig.2.a Algorithm-Architecture Transform approach using 13 multipliers for 8X1 DCT 

 
 
 
       
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Fig. 2.c. Internal  Blocks of rot(θ) 

 
 

Fig.2.b Processing elements for DCT 

X + x(0) 

x(1) 

x(0)+x(1) 

x(0)-x(1) 

rot(θ) x(0)

x(1)

x(0)cosθ -x(1)sinθ

x(0)sinθ -x(1)cosθ

a-b

a+b 

  bx-ay 

ax+by 

  x 

   y 

 

a=sin θ 
b=cosθ 

X + 

rot(π/8) 

X + 

X + 

X + 

X + 

X + 

X + 

rot(3π/16

rot(π/16) X + 

X + 

+ +

+ 

+ 
x(0) 

x(7) 

x(3) 
x(4) 

x(1) 
x(6) 

x(2) 
x(5) 

    X(1) 

X(5)

X(3)

X(7)

X(6)

X(2)

X(0)

X(4)

C4 

C4 

C4 

C4 

+ 

Proceedings of the 5th WSEAS Int. Conf. on Signal Processing, Computational Geometry & Artificial Vision, Malta, September 15-17, 2005 (pp94-101)



 

 

 

4

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                            Fig. 3. Adding Custom Logic to the Nios ALU 
 

3.2 Custom instructions of NIOS processor   
The functions which cannot be executed 

efficiently using the in-built IP blocks may be 
implemented using custom logic blocks which are 
designed using Quartus® II design software. The 
interfacing details of the custom logic with the Nios 
ALU is shown in Fig.3.   The performance of the Nios  
processor is enhanced by integrating these blocks with 
the Nios core using the SOPC builder system 
development tool. The program to be executed by the 
Nios core is written in C/C++ and the custom 
instructions executed by the custom block are defined 
as software macro and invoked in C/C++ program. 

Custom instructions consist of two essential 
elements, a Custom logic block, the hardware that 
performs the user-defined operation, and a Software 
macro, which allows the system designer to access the 
custom logic through software code.  

The task performed by the custom block may 
be defined either as single-cycle combinatorial 
operation or as multi-cycle sequential operation. In 
both cases, two 32-bit operands may be passed to 
custom block and a 32-bit result is returned. The CPU 
clock is made available to the custom block only when 
it is defined to be sequential.  

An 11 bit prefix code may be sent to the 
custom block along with the other operand(s) through 
the prefix port.  This may be used to specify the type of 
operation to be performed in the custom block. 

 

3.3 Study of the custom instructions and some  
      observations 

The custom instructions for add, multiply and 
convolution are added to the Nios core and studied by 
defining them as both combinatorial and sequential 
blocks. The sequential blocks require more than two 
clock cycles for correct operation. (The number of 
clock periods is chosen to be the number of clock 
cycles required for the sequential block +1). The 
combinatorial blocks require 1 clock cycle.     
However, due to the overheads involved, for every call 
to a custom block, the Nios CPU spends at least 7 CPU 
cycles.  For less computation intensive tasks, it would 
be preferable to make the Nios CPU to wait during 
every call to the custom block. For highly computation 
intensive tasks, it would be desirable to make the CPU 
concurrently working.  

 
Fig.4 Scheme for concurrent execution of custom 

logic with Nios core 
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3.4 Custom instructions with concurrent   
execution  

In this paper, we propose a scheme shown in 
Fig.4 to ensure the concurrency between the Nios 
processor and custom logic. 

The execution of the custom instruction is split 
into a number of phases: write operand and operand 
number, issue start or reset signal, and read the results. 
Each phase of the instruction requires only 2-3 clock 
cycles.  When a custom instruction is to be executed, 
first, the input data is fed into the input register file one 
after another. Next, a reset signal and start signal are 
issued to start the computation. The counter stops the 
computation process after a predetermined number of 
clock cycles. Using the read phase, the processor can 
read the result.  

While adding custom instructions in SOPC 
builder, the number of cycle counts after which we 
need to process the result of custom block, is given as 
either 2 or 3. 

3.5 Study of the clock generation schemes 
 
3.5.a A new scheme for internal clock generation 

When the custom block is integrated to the 
Nios core using the SOPC builder, the CPU clock (of  
frequency 33.33 MHz) is available as one of the inputs 
to the custom block.  

Sequential circuits may use this clock as the 
basic clock from which other clock signals are derived.  
However, if the custom block requires a large number 
of sequential operations, it would be preferable to use a 
higher clock frequency to minimize the computation 
time.  This may be achieved by generating the clock 
internally in the custom block. Fig.5 gives the circuit 
diagram of a clock generation scheme, which consists 
of a delay block and an inverter. 

For example, to perform 8X8 DCT, a few 
clock cycles may be used to write the operands. Then 
the reset and start signals are issued. Assuming that a 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5 Clock generation 
scheme 
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4-stage pipeline is used for computing DCT, the 
counter stops the operation after 4N clock cycles. The 
processor can read the result now and restart the entire 
process. Pipelining also enables a batch of data to be 
processed one behind the other and the termination 
count for the counter should be appropriately modified. 
As the input register file and output register file are the 
integral part of the custom logic there is no need for 
separate arbitration for writing the data and reading the 
result of the custom logic. But the overhead here is 
additional memory needed to store the input data and 
output data in register files. 

In APEX 20KE200, LUT delay is of the order 
of 1ns. Each 2 input MUX requires a 4 input LUT for 
the implementation. Hence when 5 multiplexers are in 
cascade, the clock period is of the order 10ns. The 
actual clock period depends on the interconnect delay. 
The select inputs s(0)-s(18) are connected to the lower 
order 18 bits of dataa port and the data  inputs a(0)-
a(18) are connected to the datab port of the Nios CPU. 
When prefix code is 0, the clock is reset to 0. And it 
keeps toggling periodically for other prefix codes. 
Clocks with periods in the range of  6.076 ns - 13.704 
ns are obtained when 1 to 8 multiplexers are in 
cascade. In order to measure the clock frequency, the 
scheme given in Fig.6 is used. In this scheme, the CPU 
clock of period 30ns is divided by 40 to generate the 
count enable signal of duration 1.2µs. The Cycle 
counter is initially cleared and is applied with the 
internal clock. The count reached by this counter when 
the count enable is high, gives an estimate of the 
frequency of the internal clock.       

 
 

 
 
 
 
 
 
 
 
 

 
Fig.6 User clock frequency measurement scheme 

 
3.5.b Internal clock generation using PLL 

For the custom block declared as sequential, 
the internal clock of higher/lower frequency may be 
obtained by multiplying the processor clock using the 
PLL in APEX devices. For this purpose, the megacore 
function altclkclock may be used.  Fig.7 gives the 

ClockLock and ClockBoost circuitry in APEX 20K 
devices. 

 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
Fig.7. Clock Lock and Clock Boost circuitry in 

APEX 20K devices 
 
Either single output clock of 1X, 2X, and 4X 

can be used or combination of both can be used. For 
the DCT, the altclkclock is used to generate the clocks 
for memory read and write operations. The scaling 
multiplication of APEX20KE PLLs allows a wide 
range of user-defined multiplication and division ratios 
that are not possible with DLLs. Hence it is possible to 
achieve non-integral multiples of the CPU clock 
frequency. 

The clock multiplication factor to be realized 
using mega core function altclkclock has to be 
specified at the synthesis time and hence the clock 
frequency cannot be dynamically altered as in the 
proposed new  scheme.   

 
4  Implementation results  

The various blocks of the JPEG encoder given 
in Fig.1, are implemented in SOC kit and the results 
are presented in this section.   

All the blocks are implemented in the Nios 
core using C programs and the number of clock cycles 
required for execution of each of these blocks are listed 
in Table 1.   Two dimensional DCT, quantization and 
zig - zag scanning operations are also implemented in 
hardware and integrated to Nios core as custom block. 
In order to enable these operations to be carried out 
concurrently with run length coding and Huffman 
coding in Nios core, prefix codes are used for different 
operations such as loading the 2D data into block 
RAM, reading the processed results, initialize the 
parameters and start the computations. 
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Table 1. Computation Time of various blocks of 
JPEG encoder   for 8X8 Sub image 

 
Table 2. Resource utilization of various blocks of 

JPEG encoder for 8X8 sub-image 

 
For the 2D DCT and quantization, more 

number of memory read and write operations are 
required. In order to reduce the computation time, the 
CPU clock is multiplied by two and it is used as the 
basic clock for memory operations. Moreover two 
clock cycles are used for memory read but only one 
cycle is found to be adequate for the memory write.  
The computation time required for each of these 
operations in the custom block is given in Table 1. The 
area required for each of these blocks is given in  

Table 2.For the purpose of comparison, the 
huff man encoder and the run length encoder are also 
implemented in hardware as custom blocks and the 
cycle counts are also given in Table 1. From Table 1 & 

2, it may be concluded that the custom block enhances 
the speed of the JPEG encoder by a factor of 26.25 . 
5 Conclusions 

The optimization schemes proposed in this 
paper for increasing the speed of SOC based JPEG 
encoder have been validated.  Scheme proposed for 
concurrent execution of custom block and Nios CPU is 
found to give satisfactory results. Extension of this 
work for the implementation of H.263 encoder is under 
progress. The internal clock generation scheme 
proposed in this paper is useful for the study of self 
tuned wave-pipelined circuits.  
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Function No. of CPU 
clock cycles 
for software 
approach (C)  

No. of CPU clock 
cycles for hard-
ware  approach 

(Custom block) 
2D- DCT 14,331 216 
Quantization 11,318 73 
Zigzag 
Scanning 

2,178 320 

Run length 
coding 

2,924 128 

Huffman 
Encoding 

2,452 128 

Data transfer 
for 128 bytes 

    0 400 

Total 33,203 1,265 

Function No. of logical 
elements 

No. Memory bits 

2D- DCT 3,832 1,536 
Quantization 
&   zigzag 

263 2,240 

Run length 
coding & 
Huffman 
Encoding 

407 8,448 

CPU core 2,672 26,496 
Available 8,320 1,06,496 
% of usage 86.23% 36.36% 

Proceedings of the 5th WSEAS Int. Conf. on Signal Processing, Computational Geometry & Artificial Vision, Malta, September 15-17, 2005 (pp94-101)



 

 

 

8

 

Proceedings of the 5th WSEAS Int. Conf. on Signal Processing, Computational Geometry & Artificial Vision, Malta, September 15-17, 2005 (pp94-101)


