

1

Optimisation techniques for the system on chip implementation of
JPEG encoder

V. AMUDHA , B. VENKATARAMANI AND G. SEETHARAMAN
Department of Electronics and Communication Engineering
National Institute of Technology, Tiruchirappalli, INDIA

Abstract
Systems on chips have both general-purpose microprocessors and custom blocks optimized for specific functions.
In this paper, Altera APEX 20KE200 based SOC kit with Nios soft-core processor is considered for the
implementation of JPEG encoder. For an 8X8 matrix of image pixels, JPEG encoder is implemented in hardware
as a custom block and its computation complexity is compared with that implemented using high level language.
A number of optimization schemes are proposed for minimizing the computation time in the custom block. This
includes employing the 13 multiplier Algorithm Architecture Transform (AAT) for 2D DCT computation, internal
clock generation scheme which increases the speed of the custom instructions by 50% and use of memory read
and write operations at different rates. A scheme for concurrent execution of the operations in the custom block
and data transfer as well as other operations by the Nios core is also proposed. From the implementation results,
it is observed that for sub image of size 8X8, the hardware custom block is faster by a factor of twenty six
compared to software implementation. The optimization schemes proposed in this paper are also applicable for
the computation of other image transforms such as 2D DWT and encoders such as ITU H.263.

Keywords: Clock, Concurrent execution, DCT, FPGA, JPEG, SOC

1 Introduction

The ability to design, fabricate and test ICs
with gate counts of the order of a few million has led to
the development of complex embedded systems on
chip. Design of System on chip (SOC) may be defined
as the design of a complex IC, which integrates the
major functional elements of a complete end product
into a single chip or chip set. Hardware components in
a SOC may include one or more processors, memories,
and dedicated components for accelerating critical
tasks, and interfaces to various peripherals. It may also
include analog, RF, Micro-Electro-Mechanical
Systems (MEMS) and optical input/output interfaces.

One of the approaches for SOC design is the
platform based approach. For example, the platform
FPGAs such as Xilinx Virtex II Pro and Altera
Excalibur include custom designed fixed
programmable processor cores together with millions
of gates of reconfigurable logic devices.[1] In addition
to this, the development of IP cores for the FPGAs for
a variety of standard functions including processors,
enables a multi million gate FPGA to be configured to
contain all the components of a platform based FPGA.
Development tools such as the Altera SOPC builder
enable the integration of IP cores and the user designed

custom blocks with the soft-core processors such as the
Nios processor. ([2], [3]) Soft-core processors are far
more flexible than the hard-core processors and they
can be enhanced with custom hardware to optimize
them for specific application. The technique for
efficient implementation of the various blocks of JPEG
encoder on the Altera APEX 20KE200 based SOPC kit
is presented in this paper.

2 An overview of JPEG encoder and its
various blocks

The block diagram of the JPEG encoder is
given in Fig.1. Brief description about the technique
used for the Discrete Cosine Transform (DCT)
transform is given in this section. The details of the
other blocks of the encoder may be found from [4],[5]
[6]. The DCT and quantization are the most
computation intensive tasks in the JPEG encoder and
are desirable to be implemented in hardware. The
zigzag scanning can be carried out using look up table
and hence it is found to be efficient in hardware
implementation by just swapping the memory contents.
The rest of the blocks in the encoder may be
implemented either in software or in hardware.

Proceedings of the 5th WSEAS Int. Conf. on Signal Processing, Computational Geometry & Artificial Vision, Malta, September 15-17, 2005 (pp94-101)

Fig. 1. Block diagram of the JPEG encoder
2.1 Discrete cosine transform

Discrete Cosine Transform (DCT) transforms
the information in space or time domain to the
frequency domain and has a number of desirable
properties such as real transform coefficients, good
energy compaction and availability of fast computation
algorithms [7]. In view of these, it has been adopted in
many compression and decompression standards such
as JPEG, MPEG and H.263. In the JPEG encoder, the
image to be compressed is split into 8X8 sub images
and passed to the DCT block. X(k), the kth transform
coefficient of one dimensional DCT of a sequence x(n)
of length M is given by

 M-1

X(k) = α(k) Σ x(n) cos [(2n+1)kπ/2M (1)
 n=0

The inverse transform coefficient x(n), the nth data in
the sampled sequence, can be expressed in terms of the
DCT coefficients as follows:

 M-1

x(n) = (1/M) Σ α(k) X(k) cos [(2n+1)kπ/2M] …(2)
 k=0
 where α(k) = 1 / √ 2 if k = 0
 = 1 k ≠ 0

The 2D DCT of the 8X8 image block is computed, first
by computing the 1D DCT of each row of the matrix
and then computing the 1D DCT of the resulting
matrix along the column. VLSI implementation of
discrete cosine transform has been studied in a number
of previous works. [7],[8],[9]. In this paper, DCT
computation using Algorithm-Architecture Transform

(AAT) structure shown in Fig.2, is considered [8]. The
8-point DCT architecture derived using this technique,
reduces the number of multiplications from 56 to 13.

3. System design using SOC kit
3.1 An overview of the SOC kit

System on chip (SOC) kit used for the
implementation of 2D DCT is based on Altera®
APEX20K200E device and is pre-loaded with a 32-bit
Nios embedded processor system reference design. The
Nios system module (CPU and peripherals) typically
occupies between 25% to 35% of the logic elements on
this device and the remaining logic elements can be
used for the implementation of user defined custom
blocks. Nios development software supplied with this
kit includes a Quartus® II project directory containing
reference design examples.

The reference design and software are
preloaded in flash memory, and boot on power-up. The
reference design software includes a monitor that can
be used to download and debug programs. With SOPC
builder, designers can select and parameterize
intellectual property (IP) block from an extensive list
of communication, digital signal processing (DSP),
microprocessor, interface cores, and common
microprocessor peripherals.

SOPC builder integrates complex system
components such as IP blocks, memories,
microprocessors, and interfaces to off-chip devices
including ASSPs and ASICs on Altera's high-density
FPGAs. SOPC builder also saves designer’s time by
automatically generating software to match the target
hardware

Input
Image

8X8 Sub image

Image
Preprocessing

DCT Quantization
& Encoding

Encoded
 output

Differential
Quantization

Zig zag
Scanning

Runlength
Encoding

Huffman
Encoding

DCT of 8X8 Sub
 image

Encoded
output

Quantization & Encoding Block

Proceedings of the 5th WSEAS Int. Conf. on Signal Processing, Computational Geometry & Artificial Vision, Malta, September 15-17, 2005 (pp94-101)

3

Fig.2.a Algorithm-Architecture Transform approach using 13 multipliers for 8X1 DCT

Fig. 2.c. Internal Blocks of rot(θ)

Fig.2.b Processing elements for DCT

X + x(0)

x(1)

x(0)+x(1)

x(0)-x(1)

rot(θ) x(0)

x(1)

x(0)cosθ -x(1)sinθ

x(0)sinθ -x(1)cosθ

a-b

a+b

 bx-ay

ax+by

 x

 y

a=sin θ
b=cosθ

X +

rot(π/8)

X +

X +

X +

X +

X +

X +

rot(3π/16

rot(π/16) X +

X +

+ +

+

+
x(0)

x(7)

x(3)
x(4)

x(1)
x(6)

x(2)
x(5)

 X(1)

X(5)

X(3)

X(7)

X(6)

X(2)

X(0)

X(4)

C4

C4

C4

C4

+

Proceedings of the 5th WSEAS Int. Conf. on Signal Processing, Computational Geometry & Artificial Vision, Malta, September 15-17, 2005 (pp94-101)

4

 Fig. 3. Adding Custom Logic to the Nios ALU

3.2 Custom instructions of NIOS processor
The functions which cannot be executed

efficiently using the in-built IP blocks may be
implemented using custom logic blocks which are
designed using Quartus® II design software. The
interfacing details of the custom logic with the Nios
ALU is shown in Fig.3. The performance of the Nios
processor is enhanced by integrating these blocks with
the Nios core using the SOPC builder system
development tool. The program to be executed by the
Nios core is written in C/C++ and the custom
instructions executed by the custom block are defined
as software macro and invoked in C/C++ program.

Custom instructions consist of two essential
elements, a Custom logic block, the hardware that
performs the user-defined operation, and a Software
macro, which allows the system designer to access the
custom logic through software code.

The task performed by the custom block may
be defined either as single-cycle combinatorial
operation or as multi-cycle sequential operation. In
both cases, two 32-bit operands may be passed to
custom block and a 32-bit result is returned. The CPU
clock is made available to the custom block only when
it is defined to be sequential.

An 11 bit prefix code may be sent to the
custom block along with the other operand(s) through
the prefix port. This may be used to specify the type of
operation to be performed in the custom block.

3.3 Study of the custom instructions and some
 observations

The custom instructions for add, multiply and
convolution are added to the Nios core and studied by
defining them as both combinatorial and sequential
blocks. The sequential blocks require more than two
clock cycles for correct operation. (The number of
clock periods is chosen to be the number of clock
cycles required for the sequential block +1). The
combinatorial blocks require 1 clock cycle.
However, due to the overheads involved, for every call
to a custom block, the Nios CPU spends at least 7 CPU
cycles. For less computation intensive tasks, it would
be preferable to make the Nios CPU to wait during
every call to the custom block. For highly computation
intensive tasks, it would be desirable to make the CPU
concurrently working.

Fig.4 Scheme for concurrent execution of custom

logic with Nios core

C
ustom

 Logic

 Prefix port

 & || + -

N
IO

S
A

LU

B A

OUT

To FIFO
,M

em
ory,or O

ther
Logic

Proceedings of the 5th WSEAS Int. Conf. on Signal Processing, Computational Geometry & Artificial Vision, Malta, September 15-17, 2005 (pp94-101)

5

3.4 Custom instructions with concurrent
execution

In this paper, we propose a scheme shown in
Fig.4 to ensure the concurrency between the Nios
processor and custom logic.

The execution of the custom instruction is split
into a number of phases: write operand and operand
number, issue start or reset signal, and read the results.
Each phase of the instruction requires only 2-3 clock
cycles. When a custom instruction is to be executed,
first, the input data is fed into the input register file one
after another. Next, a reset signal and start signal are
issued to start the computation. The counter stops the
computation process after a predetermined number of
clock cycles. Using the read phase, the processor can
read the result.

While adding custom instructions in SOPC
builder, the number of cycle counts after which we
need to process the result of custom block, is given as
either 2 or 3.

3.5 Study of the clock generation schemes

3.5.a A new scheme for internal clock generation

When the custom block is integrated to the
Nios core using the SOPC builder, the CPU clock (of
frequency 33.33 MHz) is available as one of the inputs
to the custom block.

Sequential circuits may use this clock as the
basic clock from which other clock signals are derived.
However, if the custom block requires a large number
of sequential operations, it would be preferable to use a
higher clock frequency to minimize the computation
time. This may be achieved by generating the clock
internally in the custom block. Fig.5 gives the circuit
diagram of a clock generation scheme, which consists
of a delay block and an inverter.

For example, to perform 8X8 DCT, a few
clock cycles may be used to write the operands. Then
the reset and start signals are issued. Assuming that a

Fig.5 Clock generation
scheme

Proceedings of the 5th WSEAS Int. Conf. on Signal Processing, Computational Geometry & Artificial Vision, Malta, September 15-17, 2005 (pp94-101)

6

4-stage pipeline is used for computing DCT, the
counter stops the operation after 4N clock cycles. The
processor can read the result now and restart the entire
process. Pipelining also enables a batch of data to be
processed one behind the other and the termination
count for the counter should be appropriately modified.
As the input register file and output register file are the
integral part of the custom logic there is no need for
separate arbitration for writing the data and reading the
result of the custom logic. But the overhead here is
additional memory needed to store the input data and
output data in register files.

In APEX 20KE200, LUT delay is of the order
of 1ns. Each 2 input MUX requires a 4 input LUT for
the implementation. Hence when 5 multiplexers are in
cascade, the clock period is of the order 10ns. The
actual clock period depends on the interconnect delay.
The select inputs s(0)-s(18) are connected to the lower
order 18 bits of dataa port and the data inputs a(0)-
a(18) are connected to the datab port of the Nios CPU.
When prefix code is 0, the clock is reset to 0. And it
keeps toggling periodically for other prefix codes.
Clocks with periods in the range of 6.076 ns - 13.704
ns are obtained when 1 to 8 multiplexers are in
cascade. In order to measure the clock frequency, the
scheme given in Fig.6 is used. In this scheme, the CPU
clock of period 30ns is divided by 40 to generate the
count enable signal of duration 1.2µs. The Cycle
counter is initially cleared and is applied with the
internal clock. The count reached by this counter when
the count enable is high, gives an estimate of the
frequency of the internal clock.

Fig.6 User clock frequency measurement scheme

3.5.b Internal clock generation using PLL

For the custom block declared as sequential,
the internal clock of higher/lower frequency may be
obtained by multiplying the processor clock using the
PLL in APEX devices. For this purpose, the megacore
function altclkclock may be used. Fig.7 gives the

ClockLock and ClockBoost circuitry in APEX 20K
devices.

Fig.7. Clock Lock and Clock Boost circuitry in

APEX 20K devices

Either single output clock of 1X, 2X, and 4X

can be used or combination of both can be used. For
the DCT, the altclkclock is used to generate the clocks
for memory read and write operations. The scaling
multiplication of APEX20KE PLLs allows a wide
range of user-defined multiplication and division ratios
that are not possible with DLLs. Hence it is possible to
achieve non-integral multiples of the CPU clock
frequency.

The clock multiplication factor to be realized
using mega core function altclkclock has to be
specified at the synthesis time and hence the clock
frequency cannot be dynamically altered as in the
proposed new scheme.

4 Implementation results

The various blocks of the JPEG encoder given
in Fig.1, are implemented in SOC kit and the results
are presented in this section.

All the blocks are implemented in the Nios
core using C programs and the number of clock cycles
required for execution of each of these blocks are listed
in Table 1. Two dimensional DCT, quantization and
zig - zag scanning operations are also implemented in
hardware and integrated to Nios core as custom block.
In order to enable these operations to be carried out
concurrently with run length coding and Huffman
coding in Nios core, prefix codes are used for different
operations such as loading the 2D data into block
RAM, reading the processed results, initialize the
parameters and start the computations.

(1)

% 1,2 or 4

% 1,2 ,4

altclkclock Megafunction

 clock0

clock1 clockBoost

Inclock

Phase
comparator Voltage - controlled

Oscillator

Proceedings of the 5th WSEAS Int. Conf. on Signal Processing, Computational Geometry & Artificial Vision, Malta, September 15-17, 2005 (pp94-101)

7

Table 1. Computation Time of various blocks of
JPEG encoder for 8X8 Sub image

Table 2. Resource utilization of various blocks of

JPEG encoder for 8X8 sub-image

For the 2D DCT and quantization, more

number of memory read and write operations are
required. In order to reduce the computation time, the
CPU clock is multiplied by two and it is used as the
basic clock for memory operations. Moreover two
clock cycles are used for memory read but only one
cycle is found to be adequate for the memory write.
The computation time required for each of these
operations in the custom block is given in Table 1. The
area required for each of these blocks is given in

Table 2.For the purpose of comparison, the
huff man encoder and the run length encoder are also
implemented in hardware as custom blocks and the
cycle counts are also given in Table 1. From Table 1 &

2, it may be concluded that the custom block enhances
the speed of the JPEG encoder by a factor of 26.25 .
5 Conclusions

The optimization schemes proposed in this
paper for increasing the speed of SOC based JPEG
encoder have been validated. Scheme proposed for
concurrent execution of custom block and Nios CPU is
found to give satisfactory results. Extension of this
work for the implementation of H.263 encoder is under
progress. The internal clock generation scheme
proposed in this paper is useful for the study of self
tuned wave-pipelined circuits.

References
[1] Martin, G.Chang, H, System-on-Chip design,

Proc. of Intl. conf. on ASIC, 2001, pp 12 – 17
[2] Altera documentation library- 2003, Altera

corporation, USA
[3] W. Tuttlebee, Software defined radio, John Wiley

& Sons ltd. USA, 2004
[4] Borko Furht, Stephen W. Smoliar, Hongjiang

Zhang, “ Video and Image Processing in multi-
media Systems”, Kluwer Academic
Publishers, 1995.

[5] Fred Halshal, “Multimedia Communications
Applications, Networks, Protocols and

 Standards”, Pearson Education Asia, 2001.
[6] Khalid Sayood, “Introduction to Data

Compression”, Pearson Education, Asia, 2003.
[7] Bruce A. D., J. Ross B., Böhm A. P. W.,

Charles R., and Monica C., “Accelerated Image
Processing on FPGAs”, IEEE Transactions On
Image Processing, VOL. 12, NO. 12, DEC 2003
1543-1551

[8] K. K. Parhi, “VLSI signal processing systems”,
John Wiley & Sons, 1999

[9] August, N.J. and Dong Sam Ha, “Low power
design of DCT and IDCT for low bit rate video
codecs”, Multimedia, IEEE Transactions on
Volume 6, Issue 3, June 2004 Page(s):414 - 422

[10] Yonghong Zeng, Lizhi Cheng, Guoan Bi and
Kot. A.C., “Integer DCTs and fast algorithms”
IEEE Transactions on Signal Processing
Volume 49, Issue 11, Nov. 2001 pp 2774 - 2782

[11] Che-Hong Chen; Bin-Da Liu; Jar-Ferr Yang;
Jiun-Lung Wang; “Efficient recursive

 structures for forward and inverse discrete cosine
transform”, IEEE Transactions on Signal
Processing, Volume 52, Issue 9, Sept. 2004
Page(s):2665 - 2669

Function No. of CPU
clock cycles
for software
approach (C)

No. of CPU clock
cycles for hard-
ware approach

(Custom block)
2D- DCT 14,331 216
Quantization 11,318 73
Zigzag
Scanning

2,178 320

Run length
coding

2,924 128

Huffman
Encoding

2,452 128

Data transfer
for 128 bytes

 0 400

Total 33,203 1,265

Function No. of logical
elements

No. Memory bits

2D- DCT 3,832 1,536
Quantization
& zigzag

263 2,240

Run length
coding &
Huffman
Encoding

407 8,448

CPU core 2,672 26,496
Available 8,320 1,06,496
% of usage 86.23% 36.36%

Proceedings of the 5th WSEAS Int. Conf. on Signal Processing, Computational Geometry & Artificial Vision, Malta, September 15-17, 2005 (pp94-101)

8

Proceedings of the 5th WSEAS Int. Conf. on Signal Processing, Computational Geometry & Artificial Vision, Malta, September 15-17, 2005 (pp94-101)

