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Abstract: -This paper introduced a method of decomposing non-stationary runoff time series. By 
wavelet decomposing, the runoff time series is decomposed into stationary time series and stochastic 
time series, and AR(n) model be imposed for forecasting stationary time series. By studying chaos 
characteristic of stochastic time series, this paper put forward a nonlinear chaos dynamics-forecasting 
model to dispose runoff time series with high-embedded dimension. It can effectively decrease the 
Lyapunov exponential sum in added dimensions of reconstruction set when the dimensions of 
reconstructed space are increased. Finally, the forecasting result is reconstructed based on wavelet 
theory. The forecasting result of original runoff time series is achieved. The method is high precision 
and feasible through example test.    
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1 Introduction 
 
The nonlinear theories of runoff forecasting, 
such as the applications of neural network and 
chaos, have recently made considerable progress 
[1]-[4]. However, it is still necessary to study how 
to explore the characteristic of runoff under 
multi-scaling so that the more accurate model 
can be established. The wavelet transform is a 
kind of signal time-frequency analysis method. 
It has the characteristic of multi-resolution 
analysis. It can manifest the local characteristic 
of time domain and frequency domain. It is also 
a sort of localized time-frequency analysis 
method that both of time frame and frequency 
frame can be changed while the size of frame is 
fixed. By means of the wavelet transform, it is 
very effective to achieve the adjusting regulation 
of complicated time series and to resolve 
evolvement characteristic of time series at 
different time scaling. The local domain 
forecasting method of chaos is a very useful 
method, which is well developed in recent years 

[5][6]
. Unfortunately, it is not so valid to predict 

attractors with high-embedded dimensions by 
using local domain forecasting method.  
This paper develops a new method for disposing 
runoff time series with high-embedded 
dimension based on wavelet transform theory. 
Firstly, non-stationary runoff time series is 
decomposed into stationary time series and 
stochastic time series. Secondly, different 
models are employed to forecast them 
respectively. Especially, by studying chaos 
characteristic of stochastic time series, a 
nonlinear chaos dynamics-forecasting model is 
put forward to dispose runoff time series with 
high-embedded dimensions. Finally, the 
forecasting result is reconstructed based on 
wavelet theory, and then the forecasting result of 
original runoff time series is achieved. The 
method is high precision and feasible through 
example test.  
 
2 Theory of wavelet decomposition and 
reconstruction 
 
Assuming )()( 2 RLt ∈ψ , its Fourier transform is 

)(ˆ ϖψ . )(tψ is defined as a basic wavelet or 
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mother wavelet if the following full 
reconstruction condition is met:  
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The following equation (2) is obtained after the 
basic wavelet )(tψ  is stretched and translated. 

)(, tbaψ  is named a wavelet series. 
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Where a  and b  are indexes for stretch and 
translation respectively.   
If let 000 , bkabaa jj == , then the corresponding 
discrete wavelet is:  
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It is necessary to change the parameters a  and 
b so that wavelet transform possesses 
changeable time-resolution and frequency-
resolution, which accommodate the non-
stationary signal. Let kba jj 2,2 == , then the 
binary wavelet is obtained: 
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The binary wavelet transform is: 
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The corresponding inverse transform is: 
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The binary wavelet does not destroy the signal 
translation invariable in time domain because it 
only has discrete parameter a  but continuous 
parameter b  in time domain. The signal can be 
decomposed into high frequency series and low 
frequency series because of the different scaling. 
In this paper, runoff time series is decomposed 
and reconstructed by using binary wavelet based 
on the above theory. Mallat algorithm

[7]
 is 

adopted to decompose and reconstruct signal. 
The signal is decomposed step by step . The low 
frequency signal having been acquired at 
previous step is decomposed into high frequency 
series and low frequency series every step. After 

the Nth step has been fulfilled, the original 
signal is decomposed into: 

NN ADDDX ++++= L21     (7)  
Where NDDD ,,, 21 L  are the high frequency 
signals that are acquired at the first step and at 
the second step until the Nth step respectively. 

NA  is the low frequency signal that is acquired 
at the Nth step. 
If NDDD ,,, 21 L  and NA  can be forecasted, the 
original signal will be able to be forecasted by 
means of the reconstruction algorithm. 
 
3 The wavelet decomposition and 
characteristic analysis of runoff time 
series 
 
The signal can be decomposed into stationary 
low frequency series and nonlinear high 
frequency series by using wavelet 
decomposition algorithm. For the runoff of 
drainage area in Eons state, the original series is 
decomposed through five steps. The results are 
showed in figure 1(a-f). Figure 1(a) shows the 
curve of the low frequency series, while figure 
1(b-f) show the curves of high frequency series. 

 
3.1 The forecasting model of stationary time 
series 
Figure 1(a) shows that the low frequency series 
has distinct stationary characteristic and 
accordingly it can be forecasted through AR (n) 
model. 
Assuming one series is Nxxx ,,, 21 L , and then 
the following equation is obtained: 

tniniii xxxx εϕϕϕ ++++= −−− L2211         (8)  
Where the parameter set ],,,[ 21 nϕϕϕϕ L=  can 
be estimated through least-squares algorithm 
according to the theory of time series.  
 
3.2 The forecasting model of non-stationary time 
series 
Figure 1(b-f) show that the high-frequency series 
is borne with a very strong nonlinear. It is 
necessary to study special forecasting models to 
deal with the high frequency series. We employ 
the chaos theory to forecast them in this paper.  
According to the chaos theory, we must decide 
whether the nonlinear time series has chaos 
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characteristic. Some methods, such as 
reconstruction of phase space, Lyapunov 
exponential spectrum and conjunction saturation 
exponential, are in common use to decide chaos 
characteristic of time series.   
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Fig. 1 Low frequency series and high frequency series for five 
steps 

The theory of reconstruction of phase space is 
put forward by Takens in 1981[8]. It is described 
as following: 
Assuming an m-dimension self-control 
dynamics system can be represent with equation 
(9). 

mixxxf
dt
dx

mi
i ,,2,1),,,( 21 LL ==   (9)  

Equation (9) is transformed into an m-rank 
nonlinear differential equation via elimination 
method. 

 ),,,( )1()1()( −= mm xxxfx L        (10) 
It corresponds to time evolution:  

    ))(,),(),(()( )1( txtxtxtx m−
→

′= L    (11)  
The above equation can be dispersed into 
equation (12) with substituting difference 
equation for differential.  

)))1((,),(),(()( ττ −++=
→

mtxtxtxtx L    (12) 
Equation (12) is named reconstruction phase 
space of time delay. It retains the geometry 
structure, topology structure and dynamics 
characteristic with original system in a 
differential homoeomorphism sense. The theory 
is applied to reconstructing the time series of 
figure 1(f) in two-dimension and three-
dimension phase space. The reconstruction 
diagrams are showed in figure 2 and figure 3 
respectively.  
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 Fig. 2 Two-dimension reconstruction diagram of D5 
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Fig.3 Three-dimension reconstruction diagram of D5 

 
Figure 2 and Figure 3 show that the time series 
possesses fairly regular attractors structure. The 
maximum Lyapunov exponential of the time 

Proceedings of the 5th WSEAS/IASME Int. Conf. on SYSTEMS THEORY and SCIENTIFIC COMPUTATION, Malta, September 15-17, 2005 (pp175-179)



series is acquired to judge its chaos 
characteristic by means of the following ways. 
It is well known that positive Lyapunov 
exponential means chaos. That is said that the 
important function of the exponential lies in 
judging chaos characteristic of the time series. 
The maximum Lyapunov exponential of the high 
frequency signal is achieved with the same 
method adopted by Wolf

[9]
. The results are 

showed in table 1.  
Table 1：The maximum Lyapunov exponential of high-

frequency signal 

 
A chaos-forecasting model can be established 
according to the chaos characteristic of the time 
series. 
The basic principle of traditional local domain 
chaos forecasting method is as following. 
Firstly, for one time series { }121 ,,, −Nxxx L , it 
can be embedded into a D-dimension space by 
making use of reconstruction technology of 
phase space, and then one trajectory of it in D-
dimension phase space can be constructed with 
equation (13). 
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Secondly, assuming xn is a known number, it is 
necessary to forecast xn+τ (without loss of 
generality, let τ=1). The latest trajectory point 
containing information of xn is: 

),,,( 11 +−−= Dnnnn xxxX L               (14)       
The next trajectory point that needs to be located 
in D-dimension space is 

)ˆ,,ˆ,ˆ(ˆ
211 +−++ = Dnnnn xxxX L . Where the new 

information 1ˆ +nx in 1
ˆ

+nX  can be regarded as one 
forecasting result of xn+1. As a result, a mapping 
Fn will be created as a predictor to achieve: 

)(ˆ
1 nnn XFX =+ . 

The mapping Fn can be achieved through the 
following steps: 

(1) According to equation (15), k of the 
nearest points among N-D+1-(D-1)τ points in D-
dimension away from ),,,( 11 +−−= Dnnnn xxxX L  
can be found out. 

2
1

1

200 ])([∑
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i
iDniDnnn xxXX  (15)  

Where equation (15) is the distance equation in 
D-dimension space. 
(2) According to the iterative regularity of these 
k points, one polynomial Pn can be employed to 
fit Fn. 

If the polynomial Pn has been ascertained, we 
can employ equation (16) to achieve these 
coefficients of Pn. Consequently, Xn+1 can be 
obtained: )(ˆ

1 nnn XFX =+  

2
11

2

1

))((min

))()((min
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The results are preferable by adopting the 
algorithm mentioned above when we forecast 
the attractors with low-embedded dimensions. 
However, it is not satisfied when we forecast the 
attractors with high-embedded dimensions[10]-[13]. 
The main reason is that the higher of embedded 
dimension, the longer history of information will 
be needed. In the dynamics system with positive 
Lyapunov exponential spectrum, the longer the 
history is, the less effective of history 
information towards chaos time series is. The 
effect is exponentially decreased with time 
increasing. The large Lyapunov exponential in 
newly added dimensions of reconstruction set 
will make the arithmetic sum of full Lyapunov 
exponential spectrum increase, while the 
dimensions of reconstruction space increase. In 
order to reduce the arithmetic sum of full 
Lyapunov exponential spectrum in 
reconstruction set, equation (15) can be changed 
into:  

Signal 
maxλ  Embedded 

dimensions 

D1 0.125278 4 

D2 0.382168 4 

D3 0.410715 4 

D4 1.302778 3 

D5 1.632457 3 
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3.3 The test result  
Firstly, we forecast low frequency series and 
high frequency series by means of AR(n) model 
and chaos model. Secondly, we construct them 
to achieve the forecast result of the original time 
series based on the wavelet theory. Runoff of 
Eons is forecasted in this paper and the result is 
shown in figure 4. Where the continuous curve 
and the dashed curve represent actual data and 
forecasting data respectively.  
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Fig. 4 The result of forecasting 

 

4 Conclusion 
 
It is difficult to find an effective model to 
forecast strong nonlinear runoff. In this paper, 
we decompose the time series into stationary 
time series and stochastic time series through 
considering different scaling based on wavelet 
transform. Stationary time series and stochastic 
time series are forecasted by means of different 
models respectively. The wavelet transform and 
chaos analysis are considered at the same time in 
the model of non-stationary series. The result 
shows the method is powerful. 
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