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Abstract: TCP Algorithms were developed to avoid congestion in wired networks and to increase the 
throughput. The efficiency of TCP in the wired networks has been demonstrated because it was 
designed for it. Because of its well-known performance, it was used for the wireless network, but 
these algorithms loose their performance when the Binary Error Rate (BER) increases, such as in 
wireless LANs. 
In wireless networks, the implicit assumption which TCP makes that losses indicate network 
congestion is no longer valid. Losses in wireless networks can result from bit errors, fading and 
handoffs. 
In this paper we will compare the result of using classic TCP algorithms in wireless, we will 
demonstrate the relationship between the throughput and the BER and we will improve the 
throughput offered by changing the length of the initial congestion window. 
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1 Introduction 
The emergence of new services and features 
offered by hosts, supporting multimedia 
applications and requiring reliable data transfer, is 
constraining to use the maximum bandwidth of 
links offered and minimize losses in the network 
caused by congestion. TCP is a solution of these 
constraints, it is widely used today, it performance 
is approved in wired networks. Wired links have 
stable transmission characteristics and low BER 
(between 10-6 and 10-9) and the lost of packet is 
mostly caused by buffer overflows, indicating the 
congestion of a node. TCP uses this information 
to adapt the throughput of the link by reducing the 
congestion window of the sender. 
The Transmission Control Protocol (TCP) is 
intended for use as a highly reliable host-to-host 
protocol between hosts in packet-switched 
computer communication networks, and in 
interconnected systems of such networks [11]. 
The Protocol TCP was developed to offer a secure 
service of high performance data transfer between 
two hosts connected. To be able to offer this 
service, over a protocol layer less efficient, the 
following functionalities would be necessary: 
• Basic data transfer: TCP is able to transfer a 

continuous data flow between two hosts, by 

packaging this amount of data into packets or 
datagrams. 

• Reliability: TCP must recover from data that is 
damaged, lost, duplicated or delivered out of 
order. 

• Flow Control: TCP provides a means for the 
receiver to govern the amount of data sent by the 
sender.  This is achieved by returning a 
"window" with every ACK indicating a range of 
acceptable sequence numbers beyond the last 
segment successfully received.  The window 
indicates an allowed number of octets that the 
sender may transmit before receiving further 
permission. 

• Multiplexing: the TCP provides a set of 
addresses or ports within each host to allow for 
many processes within a single Host to use TCP 
communication facilities simultaneously.  

• Connections: TCP maintain certain status 
information for each data stream. The 
combination of this information, including 
sockets, sequence numbers, and window sizes, is 
called connection. 

• Precedence and Security: The users of TCP may 
indicate the security and precedence of their 
communication.  Provision is made for default 
values to be used when these features are not 
needed.  
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Wireless links, which are being used more 
frequently because of the growth of mobile hosts 
supporting multimedia applications, represent 
high BER, in the order of 10-3 and sometimes as 
high as 10-1. The TCP considers each loss as a 
result of congestion, and reduces the congestion 
window of the sender causing the data 
transmission to slow down. 
In this paper we will represent the relation 
between the increase of the BER in wireless 
networks and the throughput of the network, and 
we will propose an amelioration of the data 
sending rate by an appropriate choice of the 
length of the initial window. 

2 Wireless Networks: 
Wireless Networks can be classified into three: 
• Cellular Networks: Networks in which a 

mobile host is connected to the fixed network 
with the help of the Base Station. This is the 
most common for the wireless networks. Most 
of the solutions proposed to TCP over wireless 
networks use this model. 

• Ad-Hoc Networks: Networks formed by 
mobile hosts which are connected to each other 
within a radio distance. This kind of a model is 
not well deployed and very few solutions have 
been proposed to this model. 

• Satellite Networks: Networks in which satellite 
link is in between the sender and the receiver. 
These have very high BERs and high latency 
because the Satellites are at a great distance 
from the surface. 

3 Simulation Model: 
A typical wireless data application includes data 
flows between a fixed host in the wired network 
and a mobile host via a base station, represented 
in the following figure. 
 
 
 
 
 

Fig.1 :  Topology of the simulation model 
 
The path from the fixed host (node n°3) to the 
base station (node n°2) is modelled as a link with 
a bandwidth of 3 Mb/s and propagation delay of 
50 ms. We assume the bottleneck of the TCP lies 

on the wireless link between the BS and the 
mobile station (node n°1), modelled with a 
bandwidth of 650 Kb/s and a propagation delay of 
10 ms. The wireless link between MS and the 
terminal (node n°0) is assumed with no error rate, 
height bandwidth (100Mb/s) and low propagation 
delay (1ms). 

4 Comparison of TCP algorithms in 
wireless topologies: 

2.1 TCP Reno: 
TCP Reno uses slow start, congestion avoidance, 
fast retransmit and fast recovery, phases. 
In Reno, the congestion window takes the value of 
min (awin, cwnd+ndup). 
awin: the announced congestion window of the 
receiver. 
ndup: is equal to 0, until the number of duplicated 
acknowledgement (dupACK) reach the threshold. 
At the fast recovery phase the sender transmits 
only one packet, waits for the reception of a half 
window size dupACKs and then it sends a new 
packet for each additional dupACK received. In 
the case when it receives a new acknowledgement 
it goes out of the fast recovery phase and 
reinitializes ndup to 0. 

2.2 TCP Sack: 
The weakness of TCP Reno is important when 
more than one packet of the same window is lost 
because of the limited information that offer the 
cumulated ACK, the sender can only be informed 
about the lost of one and only one packet by RTT 
(Round Trip Time). 
The Selective ACK mechanism (SACK) surmount 
these limits by using the option field in the TCP 
datagram, Sack algorithm let the receiver 
informing the sender about the reception of non 
contiguous data blocs. The receiver waits for the 
reception of data to full the blanks in the received 
bloc’s sequence. When the missing segments are 
received, the receiver acknowledges all data by a 
standard ACK. 
TCP Sack algorithm is an extension of TCP Reno; 
it uses the same procedures for the increase and 
the decrease of the congestion window. As in 
Reno, TCP Sack enter in the fast recovery phase 
after  reception of an appropriate number of 
duplicated ACK, the sender then retransmit the 
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packet and reduce the congestion window size to 
its half. 

2.3 TCP Vegas: 
TCP Vegas algorithm changes the process by 
which the window size varies. Vegas uses three 
techniques to increase the flow and to reduce the 
losses:  
- It bases the decision of retransmission of the lost 
packages by the time passed between the emission 
of a segment and the reception of it 
acknowledgement. 
- It anticipates the congestion and adjusts the rate 
of transmission.  
- It modifies the mechanism of slow start to 
prevent the loss of the packages during the 
research of the value of the bandwidth.  
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Fig.2 :  Congestion Algorithms Comparison  

(Buffer=3 packets, TEB=10-3) 
 
Fig.2 shows a comparison of TCP algorithms 
(Reno, New Reno, Sack and Vegas) in wireless 
topology with a Buffer of 3 packets and a BER = 
10-3.By using TCP Sack the number of 
acknowledge packets, is greater than in Reno, 
New Reno and Vegas. 

5 Evaluation of the initial window 
length variation in Wireless 
Networks: 

In this paragraph we will simulate TCP Sack with 
a BER equal to 10-3 and buffer of 3 packets, and 
we will vary the length of the initial window, 
which is set to 1 in the TCP Sack’s original 
version. We obtain the following results: 
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Fig.3 :  TCP Sack Simulation Results 

(Buffer=3 packets, TEB=10-3, wininit =1)  
 
Fig.3 shows TCP Sack in wireless topology with a 
buffer of 3 packets, a BER of 10-3 and a 
windowinit of 1 packet. 
In Fig.3, the Base Station starts sending messages 
by transmitting the packet number 0 and waits for 
it acknowledgment, after what it sends the packet 
number 1 because of the length of the initial 
congestion window set to one. The packets 
labelled 0 to 13 are sent without error, as sending 
TCP's congestion window increases exponentially 
according to the Slow-Start algorithm. The packet 
numbered 14 is lost in the bottleneck path. The 
sender (node 3) sends the next group of 16 
packets until the labelled 29. Because of the 
packet lost, the node 0 sends an acknowledgement 
of packet 13, for each packet received from 15 to 
29 showing their reception with no error. When 
the node 3 receives duplicated ACK of this packet 
containing the information of the lost of the 
packet 14, it resends it and continues transmission 
as defined in Fast Recovery algorithm and 
Congestion Avoidance when reaching the Slow-
Start threshold. 
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Fig.4 :  TCP Sack Simulation Results  

(Buffer=3 packets, TEB=10-3, wininit =2) 
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Fig.4 shows TCP Sack in wireless topology with a 
buffer of 3 packets, a BER of 10-3 and a 
windowinit of 2 packets. 
In this situation, the node 3 sends, after the 
acknowledgement of packet 0, two packets 
numbered 1 and 2 because of the initial 
congestion window set to 2. As in preceding 
simulation the sender increases the congestion 
window exponentially regularly that the sent 
packets are acknowledged. In this situation the 
packet number 13 is lost (we reach the congestion 
before than in the preceding simulation). As in 
Fig.3 the lost packet belongs to the fourth 
congestion window. After the reception of 
duplicated ACK of the packet 12, the receiver 
sends acknowledgements of the packets 14 to 20 
which have been received correctly. The sender 
concludes that the packet 13 is not received to 
destination and then retransmits it. After the 
reception of the acknowledgement of the packet 
20, the sender continues sending the lost packets 
and continues the transmission as defined in the 
TCP Sack algorithm. 
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Fig.5 :  TCP Sack Simulation Results  

(Buffer=3 packets, TEB=10-3, wininit =3) 
 

Fig.5 shows TCP Sack simulation results obtained 
in case of an initial window set to 3. As in 
previous simulations, the sender (node 3) starts 
sending a number of packets equal to the size of 
the congestion window, and when receiving their 
ACKs, it starts sending the next congestion 
window packets by increasing exponentially its 
size. In this simulation the first packet lost is 
number 16. The receiver sends acknowledgements 
of the packet 15, for each received packet which 
belongs to the current congestion window until 
the packet 27. The packet lost is retransmitted 

when receiving the dupACKs, and then continues 
with transmitting the next messages. 
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Fig.6 :  TCP Sack Simulation Results  

(Buffer=3 packets, TEB=10-3, wininit =4) 
 

In the simulation shown in Fig.6, the size of the 
initial congestion window is set to 4. In this case 
the first lost packet is numbered 11. This packet 
belongs to the third congestion window contrary 
to the preceding simulations. 
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Fig.7 :  TCP Sack Simulation Results  

(Buffer=3 packets, TEB=10-3, wininit =5) 
 
The Fig.7 shows the packets sent by the node 3 to 
the node 2 and the acknowledgments received, 
when changing the size of the initial window and 
fixing it at 5. In this case the first lost packet is 
numbered 6. This is caused by the massif 
transmission despite the size of the buffer used, of 
3 packets. We can conclude that the configuration 
used is mal adjusted of the wireless configuration 
already defined. 
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Fig.8 :  TCP Sack Simulation Results  

(Buffer=3 packets, TEB=10-3, wininit =6) 
 

By changing the size of the initial window of the 
congestion algorithm, we obtain the result shown 
by Fig.8. In this case the first lost packet, as in the 
previous configuration, is labelled 6. 
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Fig.9 :  TCP Sack Simulation Results  

(Buffer=3 packets, TEB=10-3, wininit =7) 
 

In Fig.9 we represent the packets sent by the node 
3 and the acknowledgement received, when using 
a wireless LAN topology with a buffer of three 
packets, a BER of 10-3, in the wireless link, and 
fixing wininit to 7. 
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Fig.10 :  TCP Sack Simulation Results  

(Buffer=3 packets, TEB=10-3, wininit =8) 

 
Fig.10 shows the TCP Sack simulation results 
obtained when fixing the size of the initial 
window’s congestion algorithm to 8.  
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Fig.11 :  TCP Sack Simulation Results  

(Buffer=3 packets, TEB=10-3, wininit =9) 
 
Previous figures labelled Figure 7 to Figure 11 
represent the simulation of TCP Sack algorithm in 
wireless links with an initial congestion window 
set respectively to 5, 6, 7, 8 and 9. The first 
packets lost in theses simulations are all numbered 
5. This packet belongs to the first congestion 
window. We can guess from this result that the 
efficient throughput is less than their obtained in 
the first half simulations.  
 
By a graphical comparison we conclude that the 
best performances are obtained for a window init 
equal to 3 or 4 packets, for high values the 
performance is reduced because in this case the 
first lost packet, in the topology and the 
configuration used in these simulations, belongs 
to the first transmission window, so the algorithm 
pass quickly in congestion avoidance phase and 
this reduce the TCP performance. 
 

Initial Congestion 
Window Size 

Efficient Bandwidth (Kb/s) 
BER = 10-3 

1 499522,796 
2 506383,035 
3 523916,677 
4 516087,86 
5 505335,698 
6 505666,587 
7 499840,782 
8 511328,302 
9 504941,833 

Table 1  : Network Throughput Comparison 
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6 Conclusion:  
In this paper we studied the results of simulations 
of the TCP Sack congestion algorithm in WLAN 
connections, obtained while varying the size of 
the congestion initial window from 1 to 9. 
After the study of these results we can deduce that 
a good choice of the size of the initial window 
(wininit) improves TCP protocol, so it is 
necessary to have a rather clear idea on the state 
of the connection, on its available bandwidth and 
its error rate. Generally in the majority cases, the 
probability that the first lost package belongs to 
the first congestion window is almost null.  Thus 
it is judicious to choose the size of the initial 
congestion window of a value strictly higher than 
one. 
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