

Simulation based Evaluation of TCP in Wireless LAN Environment
MOUNIR FRIKHA, FAKHER KRICHEN

 Informatics NTSID
ENIS

Soukra Road Km 4.5 SFAX
TUNISIA

Abstract: TCP Algorithms were developed to avoid congestion in wired networks and to increase the
throughput. The efficiency of TCP in the wired networks has been demonstrated because it was
designed for it. Because of its well-known performance, it was used for the wireless network, but
these algorithms loose their performance when the Binary Error Rate (BER) increases, such as in
wireless LANs.
In wireless networks, the implicit assumption which TCP makes that losses indicate network
congestion is no longer valid. Losses in wireless networks can result from bit errors, fading and
handoffs.
In this paper we will compare the result of using classic TCP algorithms in wireless, we will
demonstrate the relationship between the throughput and the BER and we will improve the
throughput offered by changing the length of the initial congestion window.

Key-Words: TCP, Congestion, Wireless, Window, BER, Reno, New Reno, Sack, Vegas

1 Introduction
The emergence of new services and features
offered by hosts, supporting multimedia
applications and requiring reliable data transfer, is
constraining to use the maximum bandwidth of
links offered and minimize losses in the network
caused by congestion. TCP is a solution of these
constraints, it is widely used today, it performance
is approved in wired networks. Wired links have
stable transmission characteristics and low BER
(between 10-6 and 10-9) and the lost of packet is
mostly caused by buffer overflows, indicating the
congestion of a node. TCP uses this information
to adapt the throughput of the link by reducing the
congestion window of the sender.
The Transmission Control Protocol (TCP) is
intended for use as a highly reliable host-to-host
protocol between hosts in packet-switched
computer communication networks, and in
interconnected systems of such networks [11].
The Protocol TCP was developed to offer a secure
service of high performance data transfer between
two hosts connected. To be able to offer this
service, over a protocol layer less efficient, the
following functionalities would be necessary:
• Basic data transfer: TCP is able to transfer a

continuous data flow between two hosts, by

packaging this amount of data into packets or
datagrams.

• Reliability: TCP must recover from data that is
damaged, lost, duplicated or delivered out of
order.

• Flow Control: TCP provides a means for the
receiver to govern the amount of data sent by the
sender. This is achieved by returning a
"window" with every ACK indicating a range of
acceptable sequence numbers beyond the last
segment successfully received. The window
indicates an allowed number of octets that the
sender may transmit before receiving further
permission.

• Multiplexing: the TCP provides a set of
addresses or ports within each host to allow for
many processes within a single Host to use TCP
communication facilities simultaneously.

• Connections: TCP maintain certain status
information for each data stream. The
combination of this information, including
sockets, sequence numbers, and window sizes, is
called connection.

• Precedence and Security: The users of TCP may
indicate the security and precedence of their
communication. Provision is made for default
values to be used when these features are not
needed.

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp54-60)

Terminal

100 Mb/s
2 31 1 ms

650 Kb/s
10 ms 50 ms

3 Mb/s

SourceBS MS
0

Wireless links, which are being used more
frequently because of the growth of mobile hosts
supporting multimedia applications, represent
high BER, in the order of 10-3 and sometimes as
high as 10-1. The TCP considers each loss as a
result of congestion, and reduces the congestion
window of the sender causing the data
transmission to slow down.
In this paper we will represent the relation
between the increase of the BER in wireless
networks and the throughput of the network, and
we will propose an amelioration of the data
sending rate by an appropriate choice of the
length of the initial window.

2 Wireless Networks:
Wireless Networks can be classified into three:
• Cellular Networks: Networks in which a

mobile host is connected to the fixed network
with the help of the Base Station. This is the
most common for the wireless networks. Most
of the solutions proposed to TCP over wireless
networks use this model.

• Ad-Hoc Networks: Networks formed by
mobile hosts which are connected to each other
within a radio distance. This kind of a model is
not well deployed and very few solutions have
been proposed to this model.

• Satellite Networks: Networks in which satellite
link is in between the sender and the receiver.
These have very high BERs and high latency
because the Satellites are at a great distance
from the surface.

3 Simulation Model:
A typical wireless data application includes data
flows between a fixed host in the wired network
and a mobile host via a base station, represented
in the following figure.

Fig.1 : Topology of the simulation model

The path from the fixed host (node n°3) to the
base station (node n°2) is modelled as a link with
a bandwidth of 3 Mb/s and propagation delay of
50 ms. We assume the bottleneck of the TCP lies

on the wireless link between the BS and the
mobile station (node n°1), modelled with a
bandwidth of 650 Kb/s and a propagation delay of
10 ms. The wireless link between MS and the
terminal (node n°0) is assumed with no error rate,
height bandwidth (100Mb/s) and low propagation
delay (1ms).

4 Comparison of TCP algorithms in
wireless topologies:

2.1 TCP Reno:
TCP Reno uses slow start, congestion avoidance,
fast retransmit and fast recovery, phases.
In Reno, the congestion window takes the value of
min (awin, cwnd+ndup).
awin: the announced congestion window of the
receiver.
ndup: is equal to 0, until the number of duplicated
acknowledgement (dupACK) reach the threshold.
At the fast recovery phase the sender transmits
only one packet, waits for the reception of a half
window size dupACKs and then it sends a new
packet for each additional dupACK received. In
the case when it receives a new acknowledgement
it goes out of the fast recovery phase and
reinitializes ndup to 0.

2.2 TCP Sack:
The weakness of TCP Reno is important when
more than one packet of the same window is lost
because of the limited information that offer the
cumulated ACK, the sender can only be informed
about the lost of one and only one packet by RTT
(Round Trip Time).
The Selective ACK mechanism (SACK) surmount
these limits by using the option field in the TCP
datagram, Sack algorithm let the receiver
informing the sender about the reception of non
contiguous data blocs. The receiver waits for the
reception of data to full the blanks in the received
bloc’s sequence. When the missing segments are
received, the receiver acknowledges all data by a
standard ACK.
TCP Sack algorithm is an extension of TCP Reno;
it uses the same procedures for the increase and
the decrease of the congestion window. As in
Reno, TCP Sack enter in the fast recovery phase
after reception of an appropriate number of
duplicated ACK, the sender then retransmit the

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp54-60)

packet and reduce the congestion window size to
its half.

2.3 TCP Vegas:
TCP Vegas algorithm changes the process by
which the window size varies. Vegas uses three
techniques to increase the flow and to reduce the
losses:
- It bases the decision of retransmission of the lost
packages by the time passed between the emission
of a segment and the reception of it
acknowledgement.
- It anticipates the congestion and adjusts the rate
of transmission.
- It modifies the mechanism of slow start to
prevent the loss of the packages during the
research of the value of the bandwidth.

0

20

40

60

80

100

120

1,5 2 2,5 3 3,5 4

Temps (s)

N
° p

aq
ue

t Reno
NewReno
Sack
Vegas

Fig.2 : Congestion Algorithms Comparison

(Buffer=3 packets, TEB=10-3)

Fig.2 shows a comparison of TCP algorithms
(Reno, New Reno, Sack and Vegas) in wireless
topology with a Buffer of 3 packets and a BER =
10-3.By using TCP Sack the number of
acknowledge packets, is greater than in Reno,
New Reno and Vegas.

5 Evaluation of the initial window
length variation in Wireless
Networks:

In this paragraph we will simulate TCP Sack with
a BER equal to 10-3 and buffer of 3 packets, and
we will vary the length of the initial window,
which is set to 1 in the TCP Sack’s original
version. We obtain the following results:

0

20

40

60

80

100

0,5 1 1,5 2 2,5 3 3,5

Time (s)

Pa
ck

et
 N

°

Paquet 3 ->2
ACK 2->3

Fig.3 : TCP Sack Simulation Results

(Buffer=3 packets, TEB=10-3, wininit =1)

Fig.3 shows TCP Sack in wireless topology with a
buffer of 3 packets, a BER of 10-3 and a
windowinit of 1 packet.
In Fig.3, the Base Station starts sending messages
by transmitting the packet number 0 and waits for
it acknowledgment, after what it sends the packet
number 1 because of the length of the initial
congestion window set to one. The packets
labelled 0 to 13 are sent without error, as sending
TCP's congestion window increases exponentially
according to the Slow-Start algorithm. The packet
numbered 14 is lost in the bottleneck path. The
sender (node 3) sends the next group of 16
packets until the labelled 29. Because of the
packet lost, the node 0 sends an acknowledgement
of packet 13, for each packet received from 15 to
29 showing their reception with no error. When
the node 3 receives duplicated ACK of this packet
containing the information of the lost of the
packet 14, it resends it and continues transmission
as defined in Fast Recovery algorithm and
Congestion Avoidance when reaching the Slow-
Start threshold.

0

20

40

60

80

100

120

0,5 1 1,5 2 2,5 3 3,5

Time (s)

Pa
ck

et
 N

°

Paquet 3 ->2
ACK 2->3

Fig.4 : TCP Sack Simulation Results

(Buffer=3 packets, TEB=10-3, wininit =2)

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp54-60)

Fig.4 shows TCP Sack in wireless topology with a
buffer of 3 packets, a BER of 10-3 and a
windowinit of 2 packets.
In this situation, the node 3 sends, after the
acknowledgement of packet 0, two packets
numbered 1 and 2 because of the initial
congestion window set to 2. As in preceding
simulation the sender increases the congestion
window exponentially regularly that the sent
packets are acknowledged. In this situation the
packet number 13 is lost (we reach the congestion
before than in the preceding simulation). As in
Fig.3 the lost packet belongs to the fourth
congestion window. After the reception of
duplicated ACK of the packet 12, the receiver
sends acknowledgements of the packets 14 to 20
which have been received correctly. The sender
concludes that the packet 13 is not received to
destination and then retransmits it. After the
reception of the acknowledgement of the packet
20, the sender continues sending the lost packets
and continues the transmission as defined in the
TCP Sack algorithm.

0

20

40

60

80

100

0,5 1 1,5 2 2,5 3 3,5

Time (s)

Pa
ck

et
 N

°

Paquet 3 ->2
ACK 2->3

Fig.5 : TCP Sack Simulation Results

(Buffer=3 packets, TEB=10-3, wininit =3)

Fig.5 shows TCP Sack simulation results obtained
in case of an initial window set to 3. As in
previous simulations, the sender (node 3) starts
sending a number of packets equal to the size of
the congestion window, and when receiving their
ACKs, it starts sending the next congestion
window packets by increasing exponentially its
size. In this simulation the first packet lost is
number 16. The receiver sends acknowledgements
of the packet 15, for each received packet which
belongs to the current congestion window until
the packet 27. The packet lost is retransmitted

when receiving the dupACKs, and then continues
with transmitting the next messages.

0

20

40

60

80

100

120

0,5 1 1,5 2 2,5 3 3,5

Time (s)

Pa
ck

et
 N

°

Paquet 3 ->2
ACK 2->3

Fig.6 : TCP Sack Simulation Results

(Buffer=3 packets, TEB=10-3, wininit =4)

In the simulation shown in Fig.6, the size of the
initial congestion window is set to 4. In this case
the first lost packet is numbered 11. This packet
belongs to the third congestion window contrary
to the preceding simulations.

0

20

40

60

80

100

120

0,5 1 1,5 2 2,5 3 3,5

Time (s)

Pa
ck

et
 N

°

Paquet 3 ->2
ACK 2->3

Fig.7 : TCP Sack Simulation Results

(Buffer=3 packets, TEB=10-3, wininit =5)

The Fig.7 shows the packets sent by the node 3 to
the node 2 and the acknowledgments received,
when changing the size of the initial window and
fixing it at 5. In this case the first lost packet is
numbered 6. This is caused by the massif
transmission despite the size of the buffer used, of
3 packets. We can conclude that the configuration
used is mal adjusted of the wireless configuration
already defined.

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp54-60)

0

20

40

60

80

100

120

0,5 1 1,5 2 2,5 3 3,5

Time (s)

Pa
ck

et
 N

°

Paquet 3 ->2
ACK 2->3

Fig.8 : TCP Sack Simulation Results

(Buffer=3 packets, TEB=10-3, wininit =6)

By changing the size of the initial window of the
congestion algorithm, we obtain the result shown
by Fig.8. In this case the first lost packet, as in the
previous configuration, is labelled 6.

0

20

40

60

80

100

120

0,5 1 1,5 2 2,5 3 3,5

Time (s)

Pa
ck

et
 N

°

Paquet 3 ->2
ACK 2->3

Fig.9 : TCP Sack Simulation Results

(Buffer=3 packets, TEB=10-3, wininit =7)

In Fig.9 we represent the packets sent by the node
3 and the acknowledgement received, when using
a wireless LAN topology with a buffer of three
packets, a BER of 10-3, in the wireless link, and
fixing wininit to 7.

0

20

40

60

80

100

120

0,5 1 1,5 2 2,5 3 3,5

Time (s)

Pa
ck

et
 N

°

Paquet 3 ->2
ACK 2->3

Fig.10 : TCP Sack Simulation Results

(Buffer=3 packets, TEB=10-3, wininit =8)

Fig.10 shows the TCP Sack simulation results
obtained when fixing the size of the initial
window’s congestion algorithm to 8.

0

20

40

60

80

100

120

0,5 1 1,5 2 2,5 3 3,5

Time (s)

Pa
ck

et
 N

°

Paquet 3 ->2
ACK 2->3

Fig.11 : TCP Sack Simulation Results

(Buffer=3 packets, TEB=10-3, wininit =9)

Previous figures labelled Figure 7 to Figure 11
represent the simulation of TCP Sack algorithm in
wireless links with an initial congestion window
set respectively to 5, 6, 7, 8 and 9. The first
packets lost in theses simulations are all numbered
5. This packet belongs to the first congestion
window. We can guess from this result that the
efficient throughput is less than their obtained in
the first half simulations.

By a graphical comparison we conclude that the
best performances are obtained for a window init
equal to 3 or 4 packets, for high values the
performance is reduced because in this case the
first lost packet, in the topology and the
configuration used in these simulations, belongs
to the first transmission window, so the algorithm
pass quickly in congestion avoidance phase and
this reduce the TCP performance.

Initial Congestion
Window Size

Efficient Bandwidth (Kb/s)
BER = 10-3

1 499522,796
2 506383,035
3 523916,677
4 516087,86
5 505335,698
6 505666,587
7 499840,782
8 511328,302
9 504941,833

Table 1 : Network Throughput Comparison

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp54-60)

6 Conclusion:
In this paper we studied the results of simulations
of the TCP Sack congestion algorithm in WLAN
connections, obtained while varying the size of
the congestion initial window from 1 to 9.
After the study of these results we can deduce that
a good choice of the size of the initial window
(wininit) improves TCP protocol, so it is
necessary to have a rather clear idea on the state
of the connection, on its available bandwidth and
its error rate. Generally in the majority cases, the
probability that the first lost package belongs to
the first congestion window is almost null. Thus
it is judicious to choose the size of the initial
congestion window of a value strictly higher than
one.

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp54-60)

References
[1] JACOBSON Van, Congestion Avoidance and
Control, Lawrence Berkeley Laboratory,
Novembre 1988.
[2] JOEL CANNAU, Evaluation de performances
d’une amélioration de TCP Westwood, Université
Libre de Bruxelles, Année Académique
2002/2003.
[3] Brain Levy, Le point de vue d’un opérateur
sur l’évolution des télécommunications, Revue
des Télécommunications d’ALCATEL, 2002.
[4] NASRI Salem, Cours Analyse des
Performances : Réseaux et QoS, ENIS 2002/2003
[5] ADJIH Cédreic, Multimédia et accés à
l’Internet haut débit : l’analyse de la filière du
câble. Projet Hipercom, INRIA Roconcourt.
[6] C. Pham, Quality of Service & Scheduling,
Univ. Lyon1.
[7] FALL Kevin and FLOYD Sally, Simulation
based Comparison of Tahoe, Reno and SACK
TCP, Lawrence Berkeley National Laboratory,
Mars 1996.
[8] M. Mathis, J. Mahdavi, S. Floyd, A.Romanow,
RFC 2018 TCP Selective Acknowledgment
Options, October 1996
[9] S. Dawkins, G. Montenegro, M. Kojo, V.
Magret, RFC 3155 Implication des liens
défectueux sur les performances de bout en bout,
Network Working Group, Août 2001
[10] Lawrence S. Brakmo, Sean W. O’Malley,
Larry L. Peterson, TCP Vegas : New Techniques
for Congestion Detection and Avoidance,
Department of Computer science University of
Arizona.
 [11] Marina Del Rey, RFC 793 Transmission
Control Protocol, Protocol Specification,
Information Sciences Institute: University of
Southern California, September 1981.
 [12] Jean Pierre Nziga, TCP Performance of
Mobile IP in Wireless Networks.
 [13] Andrei Gutrov, Modelling Wireless Link for
Transport Protocols, University of Helsinki, Sally
Floyd – ICIR.
 [14] Nihal K. G. Samara Weera and Godred
Fairhurst, Reinforcement of TCP Error Recovery
for Wireless Communication, Elxctronics
Research Group, Departement of Engineering,
University of Aberdeen, UK.

 [15] Song Cen, Pamela C. Cosman and Geoffrey
M. Voelker, End-to-end differentiation of
congestion and wireless losses.
 [16] Sarra Ben Oubira, Réservation des
ressources pour les systèmes mobiles, Rapport de
projet de fin d’études, Ecole Supérieure des
Communications de Tunis, Juillet 2004.
 [17] Hamdi GHARBI, Implémentation et
Simulation d’un Protocole de Routage avec
Qualité de Service dans les Réseaux Ad Hoc,
Rapport de projet de fin d’études, Ecole
Supérieure des Communications de Tunis, Juillet
2004.
 [18] Inés Ben Brahim, Le routage et la gestion de
la qualité de service dans les réseaux Ad Hoc,
Mémoire, Ecole Nationale d’Ingénieur de Sfax,
Juillet 2004.
 [19] George Xylomenos, An approach of
Enhancing Internet Performance over Wireless
Links, University of California, San Diego.
 [20] Andrei Gutrov, TCP Performance in the
Presence of Congestion and Corruption losses,
University of Helsinki, Dept. of Computer
Science, December 2000.
[21] Maulin Patel, Nisarg Tanna, Patrik Patel,
Raja Banerjee, TCP over Wireless Networks:
Issues, Challenges and Survey of Solutions,
Computer Science Departement, University of
Texas at Dallas, November 2001.
[22] Sonia Fahmy, Venkatesh Prabhakar, Srinivas
R. Avasarala, Ossama M. Younis, TCP Over
Wireless Links: Mechanisms and Implications,
Department of Computer Sciences, Purdue
University.

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp54-60)

