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Abstract: - The classification of protein structures is essential for their function determination in bioinformatics. 
At present time, a reasonably high rate of prediction accuracy has been achieved in classifying proteins into four 
classes in the SCOP. However, it is still a challenge for classifying proteins into fine-grained folding categories, 
especially when the number of possible folding patterns as those defined in the SCOP is large. In our previous 
work, we have proposed a hierarchical learning architecture (HLA), two indirect coding features, and a gate 
function to differentiate proteins according to their classes and folding patterns. Our prediction accuracy rate for 
27 folding categories was 65.5% compared favorably to previous results by Ding and Dubchak with 56.5% 
prediction accuracy rate. The success of the protein structure classification depends on two factors: the 
computational methods used and the features selected. In this paper, we use a combinatorial fusion analysis 
technique to facilitate feature selection and combination for improving predictive accuracy in protein structure 
classification. When applying the combinatorial fusion to our previous work, the resulting classification has an 
overall prediction accuracy rate of 87.8% for four classes and 70.9% for 27 folding categories. These rates are 
significantly higher than our previous work and demonstrate that combinatorial fusion is a valuable method for 
protein structure classification. 
 
Key-Words: - machine learning; neural network; rank function; score function; rank/score functions; diversity 
graph. 
 

1   Introduction 
Large-scale sequencing projects produce a massive 
number of proteins with putative amino acid 
sequences but much less is known in terms of their 
three dimensional structure. Some famous structure 
databases, such as the Structural Classification of 
Proteins (SCOP) [4], contribute only no more than 
32000 entries in the Protein Data Bank (PDB) (PDB: 
31971 entries in 26-Jul. 2005). This is only about 
20% of collections in the Swiss-Port (Swiss-Port 
release version 47.5: 188477 entries in 19-Jul. 2005). 
Therefore, to extract structural information just from 
the sequence databases becomes an important issue. 
     Previous research [1] have shown that an accuracy 
rate of 70-80% has been achieved to classify most of 
proteins into four classes according to their amino 
acid sequence information (i.e., all-alpha (all-α), all- 
beta (all-β), alpha/beta (α/β), and alpha+beta (α+β)). 

However, less optimal results are obtained if a more 
complicated category is used such as the one with 
protein folding patterns [5]. 
     Ding and Dubchak [5] proposed a taxonmetric 
approach for protein folding classification (into 27 
folding patterns) beyond four simple classes with a 
Neural Network (NN) and Support Vector Machine 
(SVM) [15]. They predicted protein folds according 
to six single-parameter features ‘C’, ‘S’, ‘H’, ‘P’, ‘V’, 
and ‘Z’ first, then a combinatorial multiple-parameter 
features were formed and used in protein folding 
classification. They demonstrated that one feature 
‘CSHP’ had the highest overall prediction accuracy 
rate for 27 folding categories at 56.5% by SVM. 
     In our previous work [10], extra features and a 
gate function were defined. We proposed two 
additional indirect coding features ‘B’ and ‘SB’ to 
correlate ‘neighboring’ di-peptide pairs with protein 
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structure classification. Then, two new features 
‘CSHPVZ+B’ and ‘CSHPVZ+B+SB’ are formed to 
classify protein folding patterns. Due to the large 
number of input dimensions for these features, we 
used a gate function ‘G’ to reduce input dimensions 
of them first and then formed three new features 
‘CSHPVZ+G’, ‘CSHPVZ+B+G’, and 
‘CSHPVZ+B+SB+G’. In addition to NN and SVM, 
we also constructed a new computational architecture 
called hierarchical learning architecture (HLA). In 
HLA, a protein is classified into one of four classes at 
first, and then further classified into one of 27 folding 
patterns. With the feature ‘CSHPVZ+B+SB’, we 
improved the prediction accuracy rate for 27 folding 
categories by 9%, compared with the result from 
Ding and Dubchak [5]. 
     In this paper, we apply the technique of 
combinatorial fusion [6, 8, 9, 18] not only for better 
protein structure classification, but also for better 
feature selection and combination. In combinatorial 
fusion, results from various features are combined to 
obtain predictions with higher accuracy rate. We start 
with eleven features to assign protein class and 
folding patterns. Then, some explicit rules from 
combinatorial fusion in information retrieval (IR) 
and virtual screening (VS) [6, 8, 9, 13, 18] are used 
together with a special diversity rank/score graph to 
choose the best discriminating features for further 
combination. The proposed rules for proper feature 
selection are to reduce the complexity at the 
beginning. Then, we systematically choose the best 
discriminating features according to the diversity of 
these features, which is represented in a diversity 
rank/score graph. Our experimental results achieves 
an overall prediction accuracy rate at 87.8% for 
predicting protein classes and 70.9% for predicting 
protein folding patterns which are higher than our 
previous work at 83.6% and 65.5%, respectively. 
 
 

2 Computational Framework and 
Architecture 
 
2.1 Protein Data Sets 
We use the data sets from Ding and Dubchak [5] 
which were originated from the SCOP for training 
and testing. Any pair of two proteins in the training 
data set is less than 35% identical in any aligned 
subsequence longer than 80 residues.  All proteins in 
the testing data set are less than 40% identical to each 
other. No protein in the testing data set is more than 
35% identical to any protein in the training data set. 
The number of proteins for training and testing data 
set is 313 and 385, respectively. Table 1 shows the  

Table 1. The variety in protein structures for training 
and testing 

 
number of proteins in different classes and folding 
patterns used in this paper. 
 
 
2.2 Features 
Different features may result in different 
classifications. Ding and Dubchak [5] proposed six 
single-parameter features based on physical, 
chemical, and structural properties of the constituent 
amino acids for protein structure classification. These 
features are amino acid composition (C), predicted 
secondary structure (S), hydrophobicity (H), 
normalized van der Waals volume (V), polarity (P), 
and polarizability (Z). Five multiple-parameter 
features, ‘CS’, ‘CSH’, ‘CSHP’, ‘CSHPV’, and 
‘CSHPVZ’ were also constructed to classify protein 
folding patterns. They finally determined one feature 
‘CSHP’ with the highest overall accuracy rate for 
protein structure prediction with SVM. 
     In our previous work [10], we used the N-gram 
concept to propose two indirect coding features, 
generated from the bigram (B) and the spaced-bigram 
coding (SB) scheme. We combined the six features 
proposed by Ding and Dubchak [5] and our two 
features to form two new features ‘CSHPVZ+B’ and 
‘CSHPVZ+B+SB’. Due to the large number of input 
dimensions for these features, we used a gate 
function ‘G’ to reduce the input dimensions of them 
and then formed three new features ‘CSHPVZ+G’, 
‘CSHPVZ+B+G’, and ‘CSHPVZ+B+SB+G’. By 
comparing these features above, the time of training 

Classes Folding patterns 
No. of 

proteins 
(Training) 

No. of 
proteins 
(Testing) 

1. α1: Globin-like 13 6 

2. α2: Cytochrome c 7 9 

3. α3: DNA-binding 3-helical bundle 12 20 

4. α4: 4-helical up-and-down bundle 7 8 

5. α5: 4-helical cytokines 9 9 

1. all-α 

6. α6: Alpha; EF-hand 7 9 

7. β1: Immunoglobulin-like β-sandwich 30 44 

8. β2: Cupredoxins 9 12 

9. β3: Viral coat and capsid proteins 16 13 

10. β4: ConA-like lections/glucanases 7 6 

11. β5: SH3-like barrel 8 8 

12. β6: OB-fold 13 19 

13. β7: Trefoil 8 4 

14. β8: Trypsin-like serine proteases 9 4 

2. all-β 

15. β9: Lipocalins 9 7 

16. (α/β)1: (TIM)-barrel 29 48 

17. (α/β)2: FAD (also NAD)-binding motif 11 12 

18. (α/β)3: Flavodoxin-like 11 13 

19. (α/β)4: NAD(P)-binding Rossmann-fold 13 27 

20. (α/β)5: P-loop containing nucleotide 10 12 

21. (α/β)6: Thioredoxin-like 9 8 

22. (α/β)7: Ribonuclease H-like motif 10 14 

23. (α/β)8: Hydrolases 11 7 

3. α/β 

24. (α/β)9: Periplasmic binding protein-like 11 4 

25. (α+β)1: β-grasp 7 8 

26. (α+β)2: Ferredozin-like 13 27 4. α+β 

27. (α+β)3: Small inhibitors, toxins, lectins 12 27 
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and testing for a certain feature with ‘G’ was much 
less than that for that without ‘G’. However, each of 
these features with ‘G’ lost about 3% prediction 
accuracy rate by comparing to it without ‘G’. We 
showed that using the feature ‘CSHPVZ+B+SB’ 
together with NN outperformed all features used by 
Ding and Dubchak [5] in terms of prediction 
accuracy rate for protein structure classification. 
 
 
2.3 Computational Architecture 
The NNs have been commonly used in many fields, 
such as input-output mapping and bioinformatics 
[16]. We use NN as a multi-class classifier to build 
HLA. The Radial Basis Function Network (RBFN) is 
a three-layer network with Gaussian function that is 
suitable to be a classifier [8]. Hence, we adopted the 
RBFN model in this paper. The HLA [10] consists of 
a two-level procedure. In the first level, a protein is 
classified into one of four classes by a multi-class 
classifier (classifier 1 in Fig. 1). Then, in the second 
level, it is further classified into one of fi folding 
patterns by the corresponding multi-class classifier 
(f1, f2, f3, and f4 is equal to 6, 9, 9 and 3 in classifier 2, 
3, 4, and 5 respectively in Fig. 1). In the current work, 
we incorporated combinatorial fusion in HLA for the 
testing data set, as shown in Fig. 1. For the training 
data set, HLA is used without combinatorial fusion. 
To predict which of four classes a protein belongs to 
with HLA, we use eleven features to assign class to 
each protein in the testing data set at first. Then, we 
use the technique of combinatorial fusion to select 
the best feature and to combine results for the protein 
class discrimination. Finally, the protein class is 
predicted with the combined feature. For protein 
folding patterns within each protein class, 
combinatorial fusion is applied again for feature 
selection and combination in order to predict protein 
folding patterns. 
 

3   Combinatorial Fusion and Diversity 
Graph 
Our approach to combination methods and feature 
selection in protein structure classification is 
analogous to those used in IR [8, 9, 13], pattern 
recognition [17], molecular similarity searching and 
VR [18], and microarray gene expression analysis [2, 
3, 11]. Moreover, we adopt some of the notations and 
terminologies from [9] and [6].  
     When a protein sequence is given and a feature A 
is considered, let sA(x) be a function that assign a real 
number to the class (or folding pattern) x in the set of 
all n classes (or folding patterns) D = {c1, c2, ..., cn}. 
We view the function sA(x) as the score function with 

 
Fig. 1. The architecture of HLA together with 
combinatorial fusion 
 
 
respect to the feature A from D to R (the set of real 
numbers). When treating sA(x) as an array of real 
numbers, it would become a rank function rA(x) after 
sorting the sA(x) array into descending order and 
assigning a rank to each of their classes (folding 
patterns). The rank function rA(x) is then a function 
from D to N = {1, 2, ..., n}. 
     In order to properly compare and correctly 
combine score functions from multiple features, we 
have to normalize them. The normalization we used 
is the transformation from sA(x): D → R to sA

*(x): D 

→ [0, 1] where sA
*(x) = 

minmax

min)(

ss

sxsA

−
−

, x in D and smax 

= max{sA(x)│x in D} and smin = min{sA(x)│x in D}. 
     When m features are used to assign protein classes 
or folding patterns, there are 2m – 1 combinations for 

all m individual features ( ( ) 12
1

−=∑
=

mm

k

m
k ) with rank or 

score functions. Hence, the total number of 
combinations to be considered for predicting protein 
class and protein folding pattern are 2m+1 – 2 and 22m+2 
- 2m+3 + 4 respectively in the HLA architecture. These 
numbers can become huge when the number of 
features m is large. It is very time-consuming to do all 
combinations for protein structure classification. 
Moreover, we have to evaluate the predictive power 
of each combination across all proteins. Therefore, in 
the current paper, we only consider combinations of 
two features which still retain fairly good prediction 
power. Combination of more than two features will 
be considered in our future work. 
 
 
3.1 Methods of Combination and Feature 
Selection 
Given m features Ai, i = 1, 2, ..., m, which assign score 
function sAi and rank function rAi, there are several 
different ways of combination. There are, among 
others, score combination, rank combination, voting, 
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average combination, and weighted combination [2, 
3, 7-9, 11, 13, 17, 18]. In this paper, we use the 
average rank (or score) combination. For the m 
features Ai, rank functions rAi, and score functions sAi, 
we have the score function sR and sS of the rank 
combination and score combination respectively 
defined as:  

sR(x) = ∑
=

m

i 1
Ai (x))/m][(r , and sS(x) = ∑

=

m

i 1
Ai (x))/m][(s . 

As we did before, sR(x) and sS(x) are then sorted into 
ascending and descending order to obtain the rank 
function of the rank combination rR(x) and the score 
combination rS(x), respectively. 
     Previous work in [2, 3, 7-9, 11, 13, 17, 18] have 
demonstrated that: (a) the combination of multiple 
features would improve the prediction accuracy only 
if (1) each of the feature functions has a relatively 
high performance, and (2) the individual features are 
distinctive (or diversified), and (b) rank combination 
performs better than score combination under certain 
conditions. In this paper, we use these rules (a)(1), 
(a)(2), and (b) as our guiding principle to select 
features and to decide on the method of combination 
[6]. A diversity function d(A,B) between features A 
and B is then defined using the concept of the 
rank/score function defined by Hsu et al. [6, 8, 9]. 
 
 
3.2 The Diversity Rank/Score Graph 
For each protein and feature A, we have the score 
function sA and rank function rA. As in IR [8, 9], we 
explore the scoring (and ranking) characteristics of 
feature A by calculating the rank/score function, fA : N 
→ [0, 1] as follows:  

fA(j) = (sA
* ◦ rA

-1) (j) = sA
* (rA

-1(j)). 
We note that the set N is different from the set D 
which is the set of classes (or fold patterns). The set N 
is used as the index set for the rank function value. 
The rank/score function so defined signifies the 
scoring (or ranking) behavior of the feature A and is 
independent of the classes (or folding patterns) under 
consideration. 
     For protein pi in P = {p1, p2, ..., pt} and the pair of 
features A and B, we define the diversity score 
function di(A,B) as: di(A,B) = Σ│ fA(j)–fB(j)│ , 
where j is in N = {1, 2, . . ., n} and n is the number of 
classes (or folding patterns). When there are m’ 

features selected, there are 
2

)1(

2

''' −=








 mmm  diversity 

score functions. If we let i vary and fix the feature 
pair (A,B), then di(A,B) is the diversity score function 
s(A,B)(x) from P = {p1, p2, ..., pt} to R. Sorting s(A,B)(x) 
into descending order would lead to the diversity 

rank function r(A,B)(x). Consequently, the diversity 
rank/score function f(A,B)(x) is defined as: 

f(A,B)(j) = (s(A,B) ◦ r(A,B)
-1) (j) = s(A,B) (r(A,B)

-1 (j)), 
where j is in T = {1, 2, 3, ..., t}. Again we note that the 
set T is different from the set P which is the protein 
set considered. The set T is used as the index set for 
the diversity rank function value. The diversity 
rank/score function f(A,B)(k) so defined exhibits the 
diversity trend of the feature pair (A,B) and is 
independent of the specific protein under study. 
     The graph of the diversity rank/score function 
f(A,B)(j) is called the diversity rank/score graph (or 
diversity graph in short). In this paper, we aim to 

examine all the 
2

)1( '' −mm  diversity graphs to see 

which pair of features would give the highest 
diversity measurement. Following rules (a)(2) and 
(b), the rank combination of these two features is then 
calculated to give the final rank function and to 
choose the class (or folding pattern). 
 
 

4   Results 
The technique of combinatorial fusion [6] is used for 
protein structure classification on a testing data set 
with NN using RBFN under the HLA. Initially, we 
use eleven features, ‘C’ (reworded as A), ‘CS’ (as B), 
‘CSH’ (as C), ‘CSHP’ (as D), ‘CSHPV’ (as E), 
‘CSHPVZ’ (as F), ‘CSHPVZ+B’ (as G), 
‘CSHPVZ+B+SB’ (as H), ‘CSHPVZ+G’ (as I), 
‘CSHPVZ+B+G’ (as J), and ‘CSHPVZ+B+SB+G’ 
(as K), to assign protein classes for all proteins tested. 
Following the rule (a)(1), we select three features H, I, 
and K, for further combination because of their 
higher accuracy rate than others as demonstrated in 
[10]. With the help of rule (a)(1), we can reduce 211-1 
combinations to 23-1 combinations. Following the 
rules (a)(2) and (b), we shall use the rank 
combination of the features to predict the protein 
class. 
     The diversity of any two of features H, I, and K is 
then calculated for all proteins tested and features H 
and I are found to have the highest diversity, as 
shown in Fig. 2, among all three feature 
combinations. Hence, we use the rank combination of 
features H and I to predict protein classes for all 
proteins tested. After the protein classes for all 
proteins tested have been predicted and categorized, 
the prediction of protein folding patterns follows in 
the HLA. We use the same rules and a diversity graph 
to choose a rank combination of features JK, HJ, HK, 
and HI to predict protein folding patterns in classes 1, 
2, 3, and 4, respectively.  
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Fig. 2. The diversity rank/score graph for any pair of 
features (X,Y), X,Y in {H,I,K} for classifying protein 
classes 
 
 
Table 2. The comparisons of overall prediction 
accuracy rates Q for protein classes 

Method HLA, ‘CSHPVZ+B+SB’*, NN 
HLA + data fusion, 

NN 
Q  83.6 87.8 

* Data from the paper (Huang et al. [10]) 
 
 
Table 3. The comparisons of overall prediction 
accuracy rates Q for protein folding patterns 

Feature 
Method 

‘CSH’ ‘CSHP’ ‘CSHPVZ’ 
‘CSHPVZ 
+B+SB’ 

OvO1, NN** 40.6 41.1 41.8 ― 
OvO1, 

SVMs** 
45.2 43.2 44.9 ― 

uOvO2, 
SVMs** 51.1 49.4 49.6 ― 

AvA3, 
SVMs** 

56.0 56.5 53.9 ― 

HLA, NN* 53.3 54.3 56.4 65.5 
HLA + data 
fusion, NN 

70.9 
1one-versus-others method [5]; 2unique one-versus-others method [5]; 
3all-versus-all method [5] 
* Data from the paper (Huang et al. [10]) 
** Data from the paper (Ding and Dubchak [5]) 
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(a) Protein classes 
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(b) Protein folds 

Fig. 4. The comparisons of prediction accuracy rates Qi 
of our previous work (Huang et al [10]) (in white) and 
the current work (in black) for 4 protein classes in (a) 
and 27 protein folding patterns in (b) 
 

     The standard percentage accuracy rate Qi [6, 10, 
14] is used to evaluate our work. Qi = pi/ni 100, 
where ni is the number of testing proteins in the ith 
class or folding pattern and pi is the number of 
proteins being correctly predicted in the ith class or 
folding pattern. The overall prediction accuracy rate 

Q is given by Q = ∑
=

n

i
iiQq

1

, where qi = ni/K, where K is 

the total number of proteins tested, and n is the 
number of classes or folding patterns. The overall 
prediction accuracy rates Q for protein classes in our 
previous [10] and current work are compared as 
shown in Table 2. The current overall prediction 
accuracy rate is 87.8%, 4.2% higher than that of our 
previous work. Table 3 shows that for prediction of 
folding pattern, our current work has an overall 
prediction accuracy rate of 70.9%, which is 14.4% 
higher than that of Ding and Dubchak [5], 5.4% 
higher than that of our previous work. 
     Fig. 4 shows the comparisons of Qi of our 
previous work [10] and our current work. The current 
method gives Qi (≥ 80%) in 3 classes, especially in 
class α/β with accuracy rate reaches 97.9%, all 
higher than what we achieved previously, shown in 
Fig. 4(a). For protein folding patterns prediction, the 
current work gives Qi (≥ 80%) in 9 folding patterns, 
more than what in our previous work, as shown in Fig. 
4(b). Also, the current work outperforms our 
previous work in 12 folding patterns, especially (≥  
30% improvement) in folding patterns: α4, β3, β4, 
(α/β)5, and (α+β)2. Hence, overall, there is an 
improvement with our current method. 
 
 

5   Conclusions 
Previous studied [6, 7-9, 13, 18] has been 
demonstrated that (a) the combination of multiple 
systems (or features) would improve the performance 
only if (1) each of the individual systems (features or 
functions) has a relatively high performance, and (2) 
each individual systems are distinctive (or different), 
and (b) combination by rank outperform combination 
by score under certain conditions. 
     In this paper, we use criterion (a)(1) to select 
features and then apply criterion (a)(2) by computing 
the diversity rank/score graph in order to select the 
pair of features with the highest diversity. Criterion 
(b) is then used to combine these two features using 
ranks. We apply combinatorial fusion in [6] to 
improve accuracy in protein structure prediction. We 
have successfully improved the overall predictive 
accuracy rate of 87.8% for the four classes and 70.9% 
for the 27 folding categories. We improve previous 
results by Huang et al. [10] and Ding and Dubchak [5] 
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by incorporating the method of combinatorial fusion 
in their approach using NN in HLA.  
     The work in this paper is one of a series of 
on-going projects towards the protein structure 
classification problem. In the previous one [12], we 
obtained the overall predictive accuracy rate of 87% 
for the four classes and 69.6% for the 27 folding 
categories by using combinatorial fusion for eight 
features without the gate function. The results in this 
paper show that the combinatorial fusion has 
potential to improve the prediction accuracy for 
protein structure classification by adding more 
features, even it has weak performance. This 
phenomenon encourages us to design new features 
for protein structure classification. 
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