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Abstract: - The purpose of data fusion is to produce an improved model or estimate of a system from a set of 
independent data sources. There are various multisensor data fusion approaches, of which Kalman filtering is 
one of the most significant. Methods for Kalman filter based data fusion include measurement fusion and state 
fusion. This paper gives a simple a review of fusion and state fusion, and secondly proposes new integrated 
method of state fusion based on fusion procedures at the prediction and update level. To illustrate application, a 
simple example is performed to evaluate the proposed method. 
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1 Introduction 
The widespread distribution and availability of 
small-scale sensors, actuators, and embedded 
processors is transforming the physical world into a 
computing platform. Sensor networks that combine 
physical sensing capabilities such as temperature, 
light with networking and computation capabilities 
are becoming ubiquitous. Applications range from 
environmental control, warehouse inventory, and 
health care to scientific and military scenarios. The 
goal of these sensor networks is to collect 
information from the area and to relay it through the 
network. Since several years, research in 
telecommunication, wireless networks, and signal 
processing has focused on this topic that raises new 
challenges in wireless communication.  Wireless 
sensors networks recently received tremendous 
attention because of its promise of a wide range of 
potential applications in both civil and military 
areas. Wireless sensor network consists of a large 
number of small sensor nodes with sensing, data 
processing, and communication capabilities, which 
are deployed in a region of interest and collaborate 
to accomplish a common task, such as 
environmental monitoring. Distinguished from 
traditional wireless networks, wireless sensors 
networks are characterized by dense node 
deployment, frequent topology change, and serious 
power, computation, and memory constraints. These 
unique characteristics and constraints present many 
new challenges to the design such as energy  
 

conservation, self-organization, efficient data 
dissemination, and fault tolerance. Sensor 
integration and fusion is a prerequisite to exploiting 
the inherent advantages of multi-sensor systems 
over single sensor systems. Using a single sensor, 
we can monitor objects with a precision and 
accuracy that depend on the sensor characteristics. 
By using multiple sensors to observe and monitor an 
object, we can obtain multiple viewpoints, extended 
coverage both spatially and temporally, reduce the 
ambiguity and obtain more precise estimate of 
object behaviour than that is possible through the 
best individual sensor.  The use of sensory data 
from a range of disparate, multiple sensors are to 
automatically extract the maximum amount of 
information possible about the sensed environment 
under all operating conditions. Increased 
performance, reliability, data rates, and autonomy, 
coupled with increased complexity, diverse 
uncertain operating environments, requires the 
automated intelligent combination of data from 
multiple sensors to derive less ambiguous/uncertain 
information about the desired state. While the 
concept of data fusion is not new, the emergence of 
new sensors, advanced processing techniques, and 
improved processing hardware make real-time 
fusion of data increasingly possible. This makes the 
system less vulnerable to failures of a single 
component and generally provides more accurate 
information. In addition several readings from the 
same sensor are combined, making the system less 
sensitive to noise and anomalous observations. The 
objective of this paper is to develop a Kalman based 
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fusion model to give a better, state estimate at each 
step of system operation. 
 

2 Multisensor networks  
Sensor networks consist of very large numbers 
of low-cost devices, each of which is a data source, 
measuring some quantity the object's location, or for 
example the ambient temperature and requiring 
some data fusion model for their operation  
(See Fig 1) 

 

 

Fig.1 Sensor network. 

These networks provide important data sources and 
create new data management requirements. For 
instance, these sensors are generally self powered, 
wireless devices. Such a device draws far more 
power when communicating than when computing. 
Thus, when querying the information in the network 
as a whole, it will often be preferable to distribute as 
much of the computation as possible to the 
individual nodes. In effect, the network becomes a 
new kind of database, whose optimal use requires 
operations to be pushed as close to the data as 
possible. Query execution on sensor networks 
requires a new capacity: the ability to adapt to 
rapidly changing configurations, such as sensors that 
die or disconnect from the network. In sensor 
networks individual sensor nodes are connected to 
other nodes in their neighborhood through a wireless 
network, and they use a multihop routing protocol to 
communicate with nodes that are spatially distant. 
Sensor nodes also have limited computation and 
storage capabilities: a node has a general-purpose 
CPU to perform computation and a small amount of 
storage space to save program code and data. A 
sensor node has one or more sensors attached that 
are connected to the physical world. Example 
sensors are temperature sensors or light sensors. 
Thus each sensor is a separate data source that 

generates records with several fields such as the id 
and location of the sensor that generated the reading, 
a time stamp, the sensor type, and the value of the 
reading. Records of the same sensor type from 
different nodes have the same schema, and 
collectively form a distributed table. The sensor 
network can be considered a large distributed 
database system consisting of multiple tables of 
different types of sensors. Sensor data might contain 
noise, and it is often possible to obtain more 
accurate results by data fusion from several sensors. 
For example, when monitoring the concentration of 
a dangerous bio-chemical in an area, one possible 
query is to measure the average value of all sensor 
readings in that region, and report whenever it is 
higher than some predefined threshold. We consider 
the sensor network as a large distributed database 
system, namely sensor database. Recent 
development of sensor database systems has 
attracted more and more interests in the querying 
performance for sensor network. Multiple sensor 
networks may be classified by how the sensors in 
the network interact. Three classes are defined as 
complementary, competitive and cooperative. 
Sensors are complementary when they do not 
depend on each other directly, but can be combined 
to give a more complete image of the environment. 
Complementary data can often be fused by simply 
extending the limits of the sensors. Sensors are 
competitive when they provide independent 
measurements of the same information. They 
provide increased reliability and accuracy. Because 
competitive sensors are redundant, inconsistencies 
may arise between sensor data, and care must be 
taken to combine the data in a way that removes the 
uncertainties. When done properly, this kind of data 
fusion increases the robustness of the system. 
Sensors are cooperative when they provide 
independent measurements, and when combined 
provide information that would not be available 
from any one sensor. Cooperative sensor networks 
take data from simple sensors and construct a new 
abstract sensor with data that does not resemble the 
readings from any one sensor. 

3 Data fusion and filtering 
The main task of a sensors network is to provide 
information about a process variable in the 
environment by taking measurements, and because 
these measurements are noisy and are taken at 
discrete points in time, it is necessary to fuse 
multiple measurements to reconstruct the parameter 
of interest. In general, given an observation vector 
corresponding to time, we want to estimate a 
process state vector. Manyika and Durrant Whyte 
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distinguish the following three cases [14]: 
Smoothing: The change of a process entity shall be 
reconstructed after a series of measurements has 
been performed. For each instant of interest, several 
measurements from previous, actual, and following 
instants are used in order to estimate the value of the 
process variable. While the measurements have to 
be recorded in real time, the smoothing algorithm 
can be performed offline; Filtering: The actual state 
of a process entity shall be estimated by using an 
actual measurement and information gained from 
previous measurements. Usually, filtering is 
performed in real time; Prediction: The actual state 
of a process entity shall be estimated by using a 
history of previous measurements. The prediction 
problem requires an adequate system model in order 
to produce a meaningful estimation. Typically, 
prediction is performed in real time. Many filtering 
algorithms cover all three aspects. Filtering and 
prediction are fundamental elements of any tracking 
system The stochastic Kalman Filter uses a 
mathematical model for filtering signals using 
measurements with a respectable amount of 
statistical and systematical errors. The method was 
developed by Kalman and Bucy [11].  The 
conventional state-vector fusion and measurement 
fusion are two kinds of methods for Kaman filter 
based data fusion, and the conventional 
measurement fusion has lower estimation error but a 
higher computational cost.  There is a growing 
interest in using Kalman filter models for data 
fusion. In turn, it is of considerable importance to 
represent Kalman filter in neural forms with local 
learning rules. To our best knowledge, Kalman filter 
has not been given such local representation. It 
seems that the main obstacle is the dynamic 
adaptation of the Kalman-gain. Here, a neural 
representation is presented, which is derived by 
means of the recursive prediction error method. We 
show that this method gives rise to attractive local 
learning rules and can adapt the Kalman gain.   
Multiple process models offer a number of 
important advantages over single model estimators. 
Multiple models allow a modular approach to be 
taken. Rather than develop a single model which 
must be accurate for all possible types of behaviour 
by the true system, a number of different models can 
be derived. Each model has its own properties and, 
with an appropriate choice of a data fusion 
algorithm, it is possible to span a larger model 
space. Four different strategies for multiple model 
estimation can be examined: multiple model 
switching, multiple model detection, multiple 
hypotheses testing, and multiple model fusion. 
Although the details of each scheme are different, 

the three first all use fundamentally the same 
approach. The designer specifies a set of models. At 
any given time only one of these models is correct 
and all the other models are incorrect. The different 
strategies use different types of test to identify 
which model is correct and, once this has been 
achieved, the information from all the other models 
is neglected. The latter strategy, model fusion utilize 
that process models are a source of information and 
their predictions can be viewed as the measurement 
from a virtual sensor. Therefore, multiple model 
fusion can be cast in the same framework as 
multisensor fusion and a Kalman update rule can be 
used to consistently fuse the predictions of multiple 
process models together. This strategy has many 
important benefits over the other approaches to 
multiple model management. It includes the ability 
to exploit information about the differences in 
behaviour of each model. As a result, the fusion is 
synergistic: the performance of the fused system can 
be better than that of any individual model. 

3.1 Fusion models 
The purpose of data fusion is to produce a model or 
representation of a system from a set of independent 
data sources, from which a single view or perception 
of some external environment or system is found or 
detected; therefore data fusion is the continuous 
process of assembling a model of the domain of the 
interest utilizing data from disparate sources. The 
algorithm uses a predefined linear model of the 
system to predict the state at the next time step. 
Added to this is a component to update for errors in 
the model using the actual observations of the 
system. The prediction and update are combined 
using the Kalman gain which is calculated to 
minimize the mean-square error of the state 
estimate. The Kalman filter has found widespread 
application in data fusion problems and track fusion 
problems, see [14], in particular Manyika and 
Durrant-Whyte [14] have applied it extensively to 
robot localization, guidance and navigation. Other 
areas of application include target detection, 
multisensor, multi-target tracking, automatic target 
recognition, collision avoidance, etc. (see [1, 5, 9, 
12, 15]). The conventional state-vector fusion and 
measurement fusion are two kinds of methods for 
Kalman filter based data fusion, and the 
conventional measurement fusion [14] has lower 
estimation error but a higher computational cost.  

3.2 Neural Based Kalman model 
Let us consider the following linear dynamical 
system:  
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observation processt t t= +y Hx n
 

1 dynamics of hidden variablest t t+ = +x Fx m  

where  

(0 )t N∝ ,Πm , (0 )t N∝ ,Σn   

are independent noise processes.  

The above notation is shorthand to denote a 
stochastic variable of expectation value m  and 
covariance matrix Σ . Our task is the estimation of  

hidden variables 

 ( ) nt ∈x R  given the series of 

observations ( ) pτ ∈y R , tτ ≤ .  

For estimations in squared (Euclidean) norm and 
Gaussian noise, the optimal solution was derived by 
Rudolf Kalman ([14, see also 16]).  
 
4 Experiments 
Using sensor network deployment in our lab, we 
collected (every 30 seconds) from multiple sensors 
the following data: temperature (deg C), light 
(lumens) humidity (percent), and the voltage level 
(V) of the batteries at each node. The data was 
collected in the following format: 
 

Time NodeID Temp Light Hum Vol 

This is a "real" noisy dataset, with lots of missing 
data, noise, and failed sensors giving outlier values, 
especially when battery levels are low. In order to 
assists in understanding the process of estimating 
the state of a system based on noisy output signals 
we developed interactive software application that is 
based on the Kalman Filter.  This consists of two 
main parts, a simple one-dimensional filter and a 
collating multi-dimensional filter (see Fig 2). The 
user can set all input parameters through a single 
interface or by following a series of guided steps. 

 

 

Fig. 2 System framework 

Raw measurement data can be collected 
automatically or inserted manually by the user and 
the results of estimating the true system state are 
then presented as a series of graphs in real-time.   

 

Fig. 3 Temperature data (filtered) from node 1 

The typical graph of data is shown on Fig. 3. The 
examined architecture has some strengths and 
weaknesses for the modelling of sensor fusion 
applications. However, currently the Kalman Filter 
and Bayesian reasoning are the most frequently used 
tools in general data fusion models.  
 
5 Discussion 
This paper describes a novel software application 
that assists in understanding the process of 
estimating the state of a linear dynamic system 
based on noisy output signal measurements.  An 
interactive Java tool, based on the Kalman Filter, is 
described.  This consists of two main parts, a simple 
one-dimensional filter and a multi-dimensional filter 
tool.  The user can set all input parameters through a 
single interface or by following a series of guided 
steps.  Raw measurement data can be generated 
automatically or inserted manually by the user and 
the results of estimating the true system state are 
then presented as a series of graphs in real-time.  
The application is described through the use of two 
simple examples.  Such an application could be used 
to teach signal and systems engineering. 
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Our future work will extend the current application 
to include signal filtering and prediction and will 
then look at the extended Kalman filter for non-
linear systems. 
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