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Abstract: -  The majority of approaches for finding best compromise solutions to multiobjective 
optimization problems (MOP) make use of the Pareto optimality concept. However, in modeling real 
world problems, we often encounter MOP with large Pareto optimal alternatives to choose from. This 
paper introduces the concept of a-efficiency, which provides a notion that is stronger than Pareto 
optimality and allows setting up a preference ordering amongst various alternatives that are Pareto 
optimal. If the user still has to process quite a large number of alternatives, we propose to arrange 
them using an interactive approach based on a plurality voting procedure. This interactive procedure 
is based on a binary preference relation to rank the solutions set. However, for more flexibility this 
interactive procedure is extended exploiting fuzzy preference relation.  
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1  Introduction 

In Multiobjective optimization problems, decision 
makers need to optimize more than one objective and 
to set up an order of preference among various 
available alternatives. Some tools consist in 
aggregating the different points of view into an 
unique function, which must be solved through 
standard single objective algorithms. Unfortunately 
this is very quite inadequate, because the objectives 
generally are incommensurable. They measure 
different properties that cannot be related to each 
other directly and cannot be combined into a single 
function [3]. Moreover, if the problem’s objective 
space (i.e., the image through the objective functions 
of the set of solutions) is not convex, there is no 
guarantee that all the non-dominated points can be 
generated. Therefore, such scheme reflects neither 
real optimization nor the expected result from all 
objective points of view [4,15,16].  
These methods try to translate a Multicriteria 
Optimization Problem (MOP) into one or more 
constrained optimization problems; they do not 
address directly the MOP problem. Other methods 
address the MOP but are incomplete (i.e., can‘t 
provide the hole non-dominated frontier), exploiting 
simulated annealing [3] genetic algorithms [5] and 
tabu search [6]. 

Also, there are a great number of multicriteria 
methods falling within the interactive local judgment 
with trial and error iterations [13]. In these methods, 
computation steps providing successive trade-offs 
and dialogue steps giving additional information on 
the decision-maker‘s preferences alternate. 
Indeed, the majority of these methods miss axiomatic 
foundations, and it is difficult to choose the method 
to be applied to a given situation. In this paper, we 
propose an axiomatic approach for multiobjective 
optimization. This approach is based on concepts 
such as the extended efficiency [8] and the partial 
efficiency [10,12]. It can be used for solving various 
multiobjective situations such as the problems 
involving many incommensurable objectives and the 
public decision problems.  
  Very often in engineering applications when 
several-often contradictory-points of view must be 
taken into account, a reasonable approach is to 
generate the efficient, i.e. Pareto optimal solutions. 
Eliminating choices that are not Pareto optimal is a 
technique, which avoids the formation of a scalar 
measure in the process of optimization. However, 
Pareto optimality alone is not always adequate for 
generating the final decision because the set of 
Pareto optimal solutions is often very large [11,12]. 
So even after eliminating all the alternatives that are 
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not Pareto optimal, the decision maker is usually left 
with a huge number of solutions to choose from. To 
discard this drawback, we introduce the notion of 
order of efficiency [11] which provides a concept 
that is stronger than Pareto optimality and allows to 
set up an order of preference among various 
available Pareto solutions and designate some Pareto 
points as being superior to others [12]. We also 
present an interactive process based on a plurality 
voting procedure that we have developed and which 
enhance the order of preference whenever the set of 
āsuperior‘ Pareto optimal solutions is still large. 
Then, this interactive process is extended exploiting 
fuzzy preference relation in order to rank the 
solutions set. 
This paper is structured as follows. In the section 2 
we give the general basic concepts. In the section 3 
we describe the pre-processing approach for 
generating the a-efficient solutions and an interactive 
procedure for extracting the most preferred Pareto 
optimal solutions. Section 4 illustrates the interactive 
procedure exploiting fuzzy preference relation and 
section 5 provides simulation results. Finally, section 
6 deals with some concluding remarks and further 
researches.  
   
2  General basic concepts 
  We introduce some concepts used in the rest of the 
paper.                                  
Definition 2.1  (Multiobjective Optimization 
Problem) 
A Multiobjective Optimization Problem (MOP) can 
be stated as: 
 
 max x ∈A F(x) =  [f1(x), f2(x),≥ , fn(x) ]    n≥2      
 
Where A denotes the feasible set of design 
alternatives, or the design space [14,16] and n the 
objective number. 
 
Definition 2.2  (Pareto optimality) 
A point U* ∈ A is said to be Pareto optimal or an 
efficient point for (MOP) if and only if for every U 
∈ A and I = {1,2,≥ ,n} either; 

∀i ∈ I fi(U) = fi (U*)  
  or there is at least one i ∈ I such that   

fi(U) <fi (U*)   
 
In words, this definition means that U* is Pareto 
optimal if there exists no feasible solution U which 
would increase some criterion without causing a 
simultaneous decrease in at least one other criterion.  
  
Definition 2.3  (Pareto dominance) 

The vector F(U) is said to dominate another vector 
F(V), denoted    F(U)>F(V), if and only if fi(U) ’  fi 
(V) and there exist at least one j such as  fj(U)>fj(V) i, 
j ∈{ 1,2,...n}.  
 
The dominance is the most used concept to reduce 
the set of the candidate solutions to the final 
decision. It is considered as the least controversial 
tool in MOP. Unfortunately, this tool is little 
discriminating and can be exploited only in the 
preliminary solving steps. For that reason, various 
forms of stronger dominances were proposed in 
literatures [11]. Among these extensions, we present 
the partial dominance [11,12] that is used in this 
work.   
 
Definition 2.4  (Partial dominance) 
The vector F(U) is said to partially dominate another 
vector F(V) for a criterion sub-set B ⊂ I,  if and only 
if fi(U) ’  fi (V) for all i ∈ B and there exist at least 
one j ∈ B such as  fj(U)>fj(V)  
 
The introduction of the partial dominance formalizes 
the following intuition: if a solution x dominates a 
solution y for a coalition of criteria, then x is better 
than y for this coalition. 
 
Definition 2.5 (Partial efficiency) 
Let I≤⊆ I. A point x* ∈ A is said to be partially-
efficient for I≤ if and only if x* is an efficient point 
for the problem P‘: 
 
max x ∈A F(x) =  [f1(x), f2(x),≥ , fk(x) ]    k ∈ I≤      

 
Hence, The partial efficiency corresponds to the 
efficiency of the solution for a restricted set of 
criteria.  
  
Definition 2.6 (a-dominance) 
Let a such that (1ā aā n), The vector F(U) is said to 
a-dominate another vector F(V), if and only there 
exist I(n+1-a) ⊆ I such that: fk(U)’  fk (V) for all k ∈ 
I(n+1-a) and fk(U)>fk(V) for at least one  k ∈ I(n+1-a).  
Note that I(n+1-a) is the index set of a subset of (n+1-
a) criteria. 
 
A solution U a-dominate a solution V if U partially 
dominate V for a coalition with at least (n+1-a) 
criteria. 
 
Definition 2.7 (a-efficiency) 
 A point x* ∈ A is said to be a-efficient for (MOP) if 
and only if F(x*) is non a-dominated. 
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An a-efficient point is the one that is partially-
efficient for all the coalition with (n+1-a) criteria. a-
efficiency means that it is not possible to increase 
anyone‘s utility without decreasing at least the utility 
of a criteria [12]. 
 
Definition 2.8  Let  W ∈ A , a et a ∈{ 1,2,...n}. If W 
is a-efficient and there does not exist U ∈ A  such 
that U is a -efficient and  a>a . The point W is then 
called amax-efficient.  
 
3. The proposed approach 
 
3.1 Pre-processing procedure 
The idea of the proposed approach is inspired from 
cooperative problem-solving methods, which 
distribute the problem and then allow the entities to 
work cooperatively on their local problems [2,7]. It 
benefits from the multi-agent techniques [2,7] that 
have opened an efficient way to solve diverse 
problems in terms of cooperation, conflict, 
coordination and concurrence within a society of 
agents. Each agent is an autonomous entity that is 
asynchronously able to acquire information from its 
environment and/or from other agents, to reason on 
the basis of this information and to act 
consequently. In this approach for dealing with 
multiobjective optimization, decision makers are 
autonomous and not required to know each other‘s 
value functions. They are assumed to be able to 
agree on the overall objectives although their 
opinions about the relative importance of each 
criterion may differ. With no loss of generality, we 
suppose that all the objectives have the same 
importance. Thus, each decision maker is 
responsible for a single objective that he aims to 
optimize and he interacts with the other decision 
makers and work together to reach a compromise 
set of solutions that satisfies the multiobjective 
optimization problem. Consequently, the objectives 
are separately optimized without any ’’scalarization’’ 
form, via interactions and communications. The 
approach results into an interactive procedure 
between the decision makers and a supra decision 
maker. Here the supra decision maker is a 
coordinator who tries to help the negotiating parties 
to find efficient agreements [9]. At the beginning of 
the procedure for generating Pareto optimal 
solutions, the supra decision maker decomposes the 
multiobjective optimization problem and assigns an 
objective for each decision maker.  At the lower 
level each decision maker solves his own 
optimization problem. He detects all the feasible 
solutions and computes for each one its cost 

according to his own criterion. Then, he informs the 
supra decision maker about all his solutions. The 
role performed by a decision maker in this step is a 
pre-processing procedure that precedes the 
multiobjective optimization. When receiving all the 
generated solutions, the supra decision maker 
computes all the Pareto optimal solutions. To find 
out this set, he is not limited to any specific method, 
the main objective is to apply a method that leads to 
all the Pareto optimal solutions. Then, he uses the a-
efficiency, which provides an intermediate concept 
of branding some Pareto optimal points as being 
perhaps superior or more desirable than others. One 
way to choose the final Pareto optimal points would 
be to compute progressively the a-efficient points 
and to increase the a value at each step (a = 1..amax).  
When the set of the a-efficient solutions is empty 
the supra decision maker stops the process and 
considers the subset of the last found solutions as 
the set of the amax-efficient solutions. It is clear that 
amax-efficiency provides alternatives satisfying the 
strongest requirements and eliminating ones, which 
are inferior. The supra decision maker retains the 
following set of solutions and communicates it to 
the several decision makers as a result of the 
multiobjective optimization problem. 
 
We show now a generic algorithm for generating 
amax-efficient solutions (Ea-max): 
 

1. let Seff be the Pareto optimal solutions set. 
2. let a =1 
3. Let Ea = Seff 
4. Ea-max = Ea 
5.  While Ea ≠–  
6.     a = a+1 

7. Find S ⊆ Ea-1, such as: ∀s ∈S and s‘∈ Ea-1 “
{S}, s a-dominate s‘ 
8.           Ea = {S} 
9.          If Ea ≠– , Ea-max = Ea  
10.     End while. 
11.      Return Ea-max 

 
Algorithm1. Generating amax-efficient solutions 

 
3.2 Interactive procedure 
Often the process of reducing the set of alternatives 
to retain points with the upper a-efficiency may not 
yield the desired reduction in the number of options. 
Though a reduced set, the decision maker still has to 
process quite a large number of alternatives. In the 
following, we introduce a plurality voting procedure, 
which will allow to further reducing the set of 
alternatives in such a case. 
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At this level, the supra decision maker informs the 
decision makers to start up the plurality voting 
procedure on the bases of the amax-efficient solutions 
set found earlier and which we denote Ea-max.  
 
 Thus, the decision maker behavior is to iteratively 
compute, both its ideal idi and anti-ideal aidi costs as 
follows: 
aidi = Min(fi(x)) (for maximization), x∈ Ea-max  , i ∈{ 
1,2,...n}, idi = Max(fi(x)) (for maximization), x∈ Ea-

max , i ∈{ 1,2,...n}, and uses these parameters to 
compute its satisfaction level sli,       sli = aidi + (idi 
∑  aidi)*ε 
ε is an adjustment parameter in ]0,1[ used to 
gradually increase sli  and consequently to set up an 
order of preference among the set of amax-efficient 
solutions Ea-max. If the decision maker chooses 
greater values for this parameter, his satisfaction 
level will reach his ideal cost in a few number of 
iterations. In addition to this parameters, the decision 
maker has to separate the Ea-max  set into satisfied 
(respectively unsatisfied) solutions subsets noted 
SSol (respectively USol ) such that SSol = { x∈ Ea-max  
/ fi(x)≥ sli} and USol ={ x∈ Ea-max  / fi(x)< sli}. The 
USol subset is considered as the solutions set that the 
decision maker prefers at least and which he would 
delete from the Ea-max whenever the most of the other 
decision makers have the same  agreements. So he 
informs every one‘s about his USol subset and asks 
them to establish their vote. For the others decision 
makers, if any received solution is belonging to their 
USol  subset they agree to delete it from the   Ea-max.. 
So, every one votes for each solution in the USol 
subset received, by assigning the value 1 to its vote 
vector if he agrees to delete the solution and 0 if he 
refuses. 
As the expected answers are received, the decision 
maker sets up for every solution in his USol subset 
the related vote vector and removes from Ea-max any 
solution the majority of the decision makers agree to 
delete. Then, he informs the supra decision maker 
about this removal. 
  
When there are no agreements for discarding any 
solution from the USol subset, the decision maker 
keeps this solution in the Ea-max set. It will be 
removed in the next iterations when the decision 
makers will increase their satisfaction level and this 
solution becomes unsatisfied for some of them. 
   
Under the assumption that all of the decision makers 
agree to remove the least preferred solutions from Ea-

max the supra decision maker updates this set of 

solutions and arranges the removed solutions as the 
first  subset of the least preferred amax-efficient 
solutions. Next, he communicates the modified Ea-max 
to all the decision makers and asks them to increase 
their satisfaction level and to restart a new plurality 
voting procedure. The process terminates whenever 
the  size of the amax-efficient solutions is equal to one 
or if after two successive iterations no new solution 
is removed. The last  subset of solutions arranged 
LPsolk is considered as the most preferred subset 
among the various amax-efficient solutions available 
because the satisfaction level of the decision makers 
are almost near to their ideal parameter and their 
SSol subset contain their ” best„  optimal solutions. 
Note that, for greater values of the adjustment 
parameter ε, the decision maker is able to detect the 
most preferred solutions from the Ea-max subset in a 
limited number of iterations, however, he will obtain 
a few number of LPsolk subsets  containing solutions 
that could be further arranged. 
 
In this manner, we can further reduce the set of 
available alternatives beyond that achieved by using 
the a-efficiency. 
 
4  Interactive procedure exploiting 
fuzzy preference relation 
The proposed interactive procedure is based on a 
binary preference relation in order to rank the 
solutions set. A solution is satisfying (preferred for) 
the decision maker only if it‘s cost is greater than the 
satisfaction level fixed, otherwise it is considered as 
unsatisfying one. In this extended version we will 
consider a fuzzy preference relation allowing the 
decision maker to have not only satisfied and 
unsatisfied solutions [12,13] but also solutions for 
which he is indifferent. For this purpose we will use 
the ” pseudo- criteria„  concept [13]. 
A pseudo-criterion is a preference model which 
includes two different thresholds : preference 
threshold and indifference threshold for each 
criterion fi (i = 1..n). These thresholds may  be 
constant, linear or affine. For every criterion fi, the 
double thresholds model is the following: 
When  fi (x)> fi (y) + pi (fi (y)) , x is preferred to y. 
When fi(y)+ pi(fi(y))≥ fi(x)> fi(y)+ qi(fi(y), x is weakly 
preferred to y. 
When fi (y)+ qi (fi (y) ≥ fi(x) and fi(x)+qi(fi (x)) ≥ fi (y) 
x is indifferent to y. 
Where pi(fi(y)) and qi(fi(y)) are preference and 
indifference thresholds, respectively. Weak 
preference is supposed to describe the decision 
maker‘s hesitation between indifference and 
preference. 
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In our work, solutions are not compared to each 
other, but each one is only compared to the idi and 
aidi solutions. However, we introduce some 
modifications in the indifference and preference 
thresholds definition. 
The current interactive procedure differs from the 
earlier one by the use of the indifference threshold qi, 
a constant value such as qi = aidi +(idi-aidi)*ε , and 
the preference threshold pi= idi -(idi-aidi)*ε,ε ∈]0,1[. 
Therefore, the decision maker is indifferent between 
all the solutions x such as aidi≤fi(x)≤qi. They are 
unsatisfied and should be deleted from the Ea-max 
whenever the most of the decision makers have the 
same indifference. The solutions y such as 
pi≤fi(y)<idi are considered as the most preferred 
ones, while solutions w such as qi<fi(w)<pi are 
weakly preferred. 
As stated before, the decision maker computes, the 
ideal idi and anti-ideal aidi costs, the indifference qi 
and preference  pi thresholds. Next, these parameters 
are used to detect the set of unsatisfied solutions 
USol  ={ x∈ Ea-max  / aidi≤fi(x)≤qi }. The decision 
maker i would delete this set of solutions from the 
Ea-max, so he informs every one‘s about his USoli 
subset and asks them to establish their vote. For the 
other decision makers j, three cases may occurs: 
 
Case1: ∀ y∈ USoli such as fj(y)=aidj or aidj<fj(y)≤qj 
The decision maker j agrees to delete y from Ea-max   
Case2: ∀ y∈ USoli such as fj(y)=idj or pj ≤fj(y)< idj 
The decision maker j doesn‘t agree to delete y from 
Ea-max   
Case3: ∀ y∈ USoli such as qj <fj(y)< pj 
The decision maker j hesitates, the solution is weakly 
preferred, he doesn‘t vote.  
 
When the votes are received, the decision maker i 
computes a qualification score for each solution y∈ 
USoli. This qualification score is formally defined as: 
Qualification(y)=� j j|y∈[pj, idj]- � j  j| y∈[aidj, qj] 
Consequently, each decision maker communicates to 
the SDM the set of solutions having the minimal 
qualification. The SDM compares the qualification 
score of each solution and removes those having 
minimal score from Ea-max. Hence, The removed 
solutions are ranked as the first subset of the least 
preferred amax-efficient solutions. 
 
 5  Simulation results 
The experiments are based on randomly generated 
binary CSMOPs (Constraint Satisfaction and 
Multicriteria Optimization Problems)[1]. Table 1 
shows the average number of Pareto optimal 
solutions obtained for different values of the 

criterion number and the corresponding a-efficient 
solutions. The concept of a-efficiency has enabled 
us to reduce the number of possible options down to 
1.5% of the original number of solutions. 

   Table 1. Average number of the obtained 
solutions  

  
  The next experimentations illustrate that the 
concept of a-efficiency could reduce effectively the 
final decision. It should be noted that the average 
portion of the 2-efficient solutions (resp. 3-efficient 
solutions) represents 25.53% (resp. 6.87%) of the 
total number of efficient solutions. 
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Figure1. The Improvements provided by the a-

efficiency to reduce the Pareto optimal solutions set. 
 
Next, we have applied the interactive process(1) and 
the interactive process(2) exploiting fuzzy preference 
relation, on the same problems. For each criterion 
number we have generated 15 problem instances and 
calculated the average number of solutions. Table2 
shows that applying the interactive process(1) 
doesn‘t eliminate any solution from the amax efficient 
solutions. However, the interactive process(2) table3 
allows the decision maker‘s to eliminate yet other 
points from the set of amax efficient solutions. Here 
the number of cycles for the interactive process(2) 
varies from 2 to 4 iterations. At each cycle there is a 
number of solutions that is removed, and the size of 
the final choice can be equal to only one solution. So 
this proves that the decision maker can set up 
preference ordering among amax-efficient solutions. 
 

Criterion 
number 

Efficient 
solutions 

2efficient 
solutions 

3efficient 
solutions 

4efficient 
solutions 

5efficient 
solutions 

6efficient 
solutions 

7efficient 
solutions 

5 218 13 1 0 0 0 0 
6 302 19 2 0 0 0 0 
7 263 -- 4 0 0 0 0 
8 360 -- 13 1 0 0 0 
9 329 -- -- 4 0 0 0 
10 491 -- -- 6 2 0 0 
11 452 -- -- -- 4 0 0 
12 502 -- -- -- 6 1 0 
13 433 -- -- -- -- 3 0 
14 467 -- -- -- -- 4 1 
15 540 -- -- -- -- 5 2 
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Criterion 
number  

Efficient 
Solutions 

Ea-max Ek
a-max   Interactive 

procedure(1) 
cycles 

CPU(ms) 

5 91 7 7 1 3149 
6 130 14 14 1 4158 
7 179 5 5 1 12127 
8 186 5 5 1 20581 
9 246 9 9 1 39843 
10 226 6 6 1 24560 
11 251 5 5 1 27212 
12 255 5 5 1 43942 
13 273 5 5 1 51267 
14 252 3 3 1 34231 
15 245 3 3 1 36158 

 
Table 2. Average number of the obtained solutions 

by the interactive procedure 
 
Criterion 
number  

efficient 
Solutions 

Ea-

max 
Ek

a-max  Interactive 
procedure(2) 
cycles 

CPU(ms) 

5 91 7 1 4 4093 
6 130 14 1 3.66 5195 
7 179 5 1 3.33 10703 
8 186 5 1 3.34 19036 
9 246 9 2 2.73 39132 
10 226 6 2 3.02 23074 
11 251 5 2 2.61 20833 
12 255 5 1 3.26 40478 
13 273 5 2 2.69 48103 
14 252 3 1 2.38 35766 
15 245 3 1 2.38 38409 

Table 3. Average number of the obtained solutions 
by the interactive procedure exploiting fuzzy 

preference relation 
 
6  Conclusion and future work 
In this paper, we have developed an interactive 
procedure  for dealing with multiobjective 
optimisation problem. Each decision maker is 
responsible for a single objective. They interact in 
order to find out and to reach their ābest‘ Pareto 
optimal solutions. Next, this interactive procedure is 
extended exploiting fuzzy preference relation. The 
effectiveness of the proposed approaches is 
demonstrated and tested on randomly generated 
CSMOP examples. Using the notion of a-efficiency 
and the interactive procedure in succession could 
help eliminate some alternatives among the multiple 
non“inferior ones. However, we shall focuses on an 
efficient algorithm for identifying points with a-
efficiency. 
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