
A New Method on Automated Web Application Testing

Mohsen Sharifi1, Shahab Tasharrofi1, Hamid Mahmoudzadeh1

1 Computer Engineering Department, Iran University of Science and Technology,

Abstract: Internet and its web contents are extensively used in real trade and the existence of bugs in software
can be disastrous. According to the specific properties of web applications, traditional test approaches are not
applicable to this area. Though, lots of methods are proposed to assure the quality of web applications,
advances are not considerable yet. This is because the specific properties of web applications have not been
taken quite seriously. Our proposed method analyzes the web applications from the user’s aspect and based on
this analysis, extracts the test model. Then, our implemented software agents run the test model to simulate the
user’s behavior. These agents use both automatically generated and handwritten scenarios to test the web
application. In addition to security, performance, and load tests, the method supports functionality test. The
proposed method also indicated the necessity of a new phase in the web application development process.

Key-Words: Web Application, Testing, Software Agent

1 Introduction
Web applications usually get their input through
HTML forms or XML structures and provide their
output based on them. They have become popular
within the last decade so that nowadays, lots of
businesses have changed their business architecture
to web based architectures. The experiences of past
decade revealed that one of the most critical sections
of web application development process is testing
them.

Unique properties of web applications made
traditional sets of tools and approaches unsuitable
for them. And although researchers have proposed
some new methods and accompanying tools to test
web applications, these methods and their related
tools have usually had restrictions especially in the
area of proper functional testing of web applications.
The proposed method, on the contrary, mainly
focuses on functional testing of web applications.
However, it also makes load and security tests more
robust.

In the following, we will discuss about unique
properties of web applications in section 2. Section 3
describes the different views which web applications
could be tested based on. Section 4 defines a sample
web based application and introduces some
scenarios in which a real user tests the sample web
application. Section 5 reviews the related works
done in the field of web application testing. Section
6 introduces a new grammar which models web
applications. The grammar is designed so that it
automates the test process. Section 7 models the
sample web application, discussed in section 4,
using the grammar introduced in section 6. It also
describes how this modeling enables a software

agent to test the sample application. Section 8
proposes the architecture used for implementation
and also mentions some implementation specific
notes.

2 Traditional application testing
versus web application testing

The differences of traditional applications and web
applications make it hard to use traditional test
methods for web applications. Knowing these
differences provides us with the opportunity to
propose an approach which covers most important
aspects of web application testing. Some of these
differences are as follows:

Almost all web applications, compared to
traditional applications, need shorter maintenance
periods [1]. Furthermore, the maintenance process
usually includes some little changes to the business
rules. To test these little changes, we should have
automated test approaches along with flexible test
suites [2].

Web application development involves lots of
development kits and these kits are continuously
changing. Due to these variations, test process
should be independent of development kit [3].

Due to the huge amount of people who have the
potential of accessing your web site, you never
know how much customers you should expect for
the next day. So, load test has always been one of
the most important tests that an approach should be
able to perform.

Web applications are usually developed due to
individual requests of customers, unlike traditional
applications which are usually developed based on

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp305-312)

their necessity to public. While these customers are
eager to use third-parties to perform test, they do not
like to share source codes of these applications with
them. So, independency from source code is much
more plausible.

These differences raise the need to have new
methods along with their accompanying tools to test
the results of development process of web
applications. These methods have to satisfy the
conditions mentioned above.

3 Different Aspects for Web
Application Testing
There are two different aspects, namely “User’s
View” and “Developer’s View”, which web
applications could be tested based on.

3.1 Testing web applications based on
developer’s view of the system
Testing web applications based on developer’s view
of the system includes modeling the application as
series of files, source codes, databases,
documentations, etc and, then, checking each
compartment of the model for existing bugs. It is
also common to test different compartments of
application along each other. Some of the benefits
and shortcomings of this view is discussed here:

Doing the exact tests, based on developer’s
view along with formal definitions, assures you of
the system’s correctness.

Accompanying components of application, and
thus test scenarios, could be extracted automatically.

Having access to files and data bases enables
the test agent to split a long test to smaller tests.
Thus, it makes test process much easier to be
modeled. For example, you could refer to database
to see whether the results of an action done on input
are as expected or not?

Despite this view of test process is thoroughly
investigated specially in the field of traditional
application testing, there are some major drawbacks
to this view which are discussed below.

Complexity of algorithms needed for an exact
test makes it unrealistic. They could not actually be
implemented with current knowledge of human.
Thus, the most important benefit of this view is
almost completely out of reach.

The need for source codes threatens the
independency of test process and development
process. It is also noticeable that source code
security is of high importance to lots of businesses.
And so, it’s almost impossible to use third-parties to
test applications while insisting on this view.

Unlike test scenarios, which could be extracted
automatically, it’s absolutely difficult to extract test
steps autonomously.

While the correctness tests are easier to be
defined here, the quality tests do not seem to be that
much easy.

The hidden relations of test scenarios, which
are not clearly coded, are hard to be defined here.

3.2 Testing web applications based on user’s
view of the system
Testing web applications based on user’s view of the
system includes a series of actions in which every
action sends an HTTP request to server and server
responds to it using HTML syntax.

Based on the fact that, in both web and
traditional application domains, it’s finally the end
user which determines whether the application
works properly or not; this method’s result turns out
to be more useful than the previous method. There
are also some benefits and shortcomings to this view
which are discussed below.

There’s no need for reverse engineering process
in this view. So, different development platforms,
which are common these days, make no difficulty in
test process. Even the newest platform, which
you’ve published only yesterday, is capable of
benefiting from existing tools using this view.

Systems that pass such a test may not be bug
free; however, there is no need to be fearful of
publishing these systems. Because the end user,
hopefully, will not experience any inconvenience
using these applications. And it’s totally because of
the nature of these tests which signify the bugs a
typical user could come across with.

“Load Test” and “Fault Tolerant Test” are more
meaningful here than their equivalents in tests based
on developer’s view of the system.

Because of independency from source codes,
it’s quite easy to expand a methodology to benefit
from this type of test.

Typical users’ behaviors could be easily
applied to these kinds of test to model different user
behaviors such as malicious users, novices, etc.
Therefore, it’s easy to perform security tests,
usability tests, etc.

On the other hand, there are also some
shortcomings which worth to be discussed here,
such as ones that follow:

Some tests, which are related to human
intelligence, are hard to be defined here.

Despite the possibility of providing scenarios as
input of the system, they will usually be generated

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp305-312)

First of all, a real user has the ability of
defining what page he/she is viewing and whether
this page contains any mistakes or not? For example,
‘Index’ page is supposed to have two links to
‘Search’ page and ‘Add Contact’ page. A real user
could define whether the page has these two
properties or not?

by selecting random paths. So, it is likely to find
types of scenarios which have not been tested yet.

Although it’s possible to generate some parts of
test model automatically, a large portion of it should
be extracted manually. And, for sure, it’s a time
consuming process which makes the modeling of an
enterprise system extremely tiring. And, perhaps, the
opportunity of expanding a methodology, which was
described before, becomes a necessity.

Second, a real user could define whether the
links on pages work correctly or not? For example,
he/she could check if the only link from ‘Error’ page
directs him to ‘Index’ page?

Having all advantages and disadvantages of
these two aspects in mind made us to test web
applications based on user’s view. Next section
describes some sample scenarios in which a user
tests a sample web application. After that, in section
7, we will discuss how these sample scenarios will
be converted to automatically generated scenarios.

Third, he/she can determine if the whole system
works properly or not? For example, if he/she gets
an error message, while adding a name, indicating
that the name already exists in the database, he/she
is capable of searching through the search page to
know whether the message was correct or not?

Fourth, he/she has the memory which tells
him/her what names has been given to the system
before. So, he/she would detect the error if system
accepted a name that he/she knows it has previously
been given to it.

4 Case Study: Web Application
Testing based on User’s View
Consider a sample web based application which is
designed to act as a phone book. As shown in
navigation diagram in Fig.1, it includes an index
page, a page to add new contacts, a page to search
for a name, a page to show the search results and a
page to show errors.

These four example scenarios of testing web
applications define four different levels of
complexity in test process, ordered by their
complicatedness. As we will discuss in the next
sections, it’s easy to automate the process of
generating these scenarios having a well-defined
model for web application.

5 Related Works
There is a vast literature on testing applications.
However, when it comes to web application testing,
it could be considered as a quite new topic. Further,
there are only a few published works which have
thoroughly investigated the critical aspects of web
application testing. Brief descriptions of some of
these works are as follows:

Fig. 1. Navigation diagram for sample web application Hieatt and Mee [4] introduce an approach
called “Acceptance Test”. Acceptance test allows
managers to describe and perform tests in scenario
level. They’ve also developed a tool box to describe
the scenarios and expected results in XML structure.

As it’s shown in Fig.1, some of the links

between pages have branches (like the link which
connects ‘Search’ page to ‘Search Result’ page and
‘Error’ page). These are the links which could have
more than one result based on the state of the server
and the query of the user. For example, when you
search a name in the ‘Search’ page you would come
across the ‘Search Result’ page giving phone
number of person you searched for or it may lead
you to ‘Error’ page that contains a message
indicating that this name does not exist in the
database.

Elbaum [5] uses user session data to test web
application. This approach concentrates on two
types of techniques. First technique generates test
cases based on the whole session while the second
technique generates them based on combinations of
sessions. Technology independency, low test cost
and use of real users in test process are some of the
reasons that favor for this method.

Jia [6] proposes an automated test approach
based on formal definitions of web applications. In
this approach, web applications are tested from the

Although this sample is so simple, it’s capable
of demonstrating both complicated and non-
complicated tests.

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp305-312)

Test-model => { Element }
Element => Name URL Method Constant-params Input-params Output-params { Validation

} { Navigation }
Constant-params => Parameter-definition
Input-params => Parameter-definition
Output-params => Parameter-definition
Validation => Name Input-params Regular-expression
Navigation => Target-element Name Fill-form-data Output
Params-definition => { Parameter-definition }
Regular-expression => Regular-expression
Fill-form-data => Params-definition
Output => { Page-descriptor }
Parameter-definition => Name Type Value
Page-descriptor => Expected-result { Post-condition } { Memorize }
Expected-result => Element-name Validation-name Validation-input
Post-condition => Initial-element-name { Step }
Memorize => Parameter-definition
Step => Use-navigation Expected-result
Use-navigation => Name Navigation-input
Validation-input => Parameter-definition
Navigation-input => Parameter-definition

Fig. 2. Proposed language grammar. Bold text indicates variable of the language while ordinary text indicates terminal of the language

aspects of functionality, web page structure, security
and performance. Based on formal definitions, in
XML syntax [7], each test contains one or more test
suites in which each of them contains some test
cases. Test cases, also following formal definitions,
contain one or more of test steps. Having these
formal definitions, a test engine is used to execute
test suites automatically. The approach which Jia
proposes is based on user’s view of the system. And
so, our approach is the same as Jia’s approach in the
way that we both test the system based on what user
views.

Di Lucca [8] uses an object oriented test model
to propose the definition of web application test
units. Based on this model, an approach for “Unit
Test” and “Integrated Test” is proposed. So, the
approach includes two important phases for
functional testing. The first one is the “Unit Test”
which deals with the test process of individual client
and server pages and the second one is “Integrated
Test” which tests the pages that are involved in
specific use cases. Authors have also introduced the
WAT (Web Application Testing) tool to support
their approach.

Kung [9] proposes a model to describe web
sites using the graph theory. First of all, he defines
different kinds of web page navigations using graph
theory. And then, he introduces “Intra-object” test
which tests selected paths for variables based on
their “definition-usage” chain in their own object.
He also uses “inter-object” test to test the selected
paths of variables which their “definition-usage”
chain is spread among all objects. Further, the
“inter-client” test, computed based on reachability
graph, is used to map the data interaction between
the clients.

Yang et. al. [10] integrate traditional test
approaches to propose a general architecture for web

application testing while focusing on 3 layer models.
They add a new sub system, called “Source
Documentation Analysis Sub-system (SDAS)”, to
the architecture proposed at [11] to solve the
problems of different programming styles of web
application development. To use this architecture,
test tool development process is divided to the
phases of design, selection, specification, integration
and implementation.

Wu [12] analyzes static and dynamic aspects of
web applications and then defines a general analysis
model which specifies typical web application
behaviors in a technology independent manner. This
model is based on specifying atomic particles which
are generated dynamically using web pages which
have static structure but dynamic content. Then
analysis model is made based on order, selection and
union operators of atomic particles. Based on this
model, a family of test techniques is introduced to
assure us of the different levels of web application
quality.

The proposed method benefits from the user’s
view of system like what Jia [6] does. But, unlike
what Jia does in [6], test suites, test cases and test
steps will all be generated automatically.
Furthermore, the result of these tests will be
determined automatically based on what test model
defines. This way, the proposed method also covers
the benefits of “definition-usage” which Kung
proposes in [9]. The method is also capable of using
user session data like what Elbaum does in [5],
although, it is not used yet.
6 Web Application Modeling

Grammar
The key feature of the proposed method is its
language grammar, based on XML, which is capable
of describing web application test models from the

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp305-312)

user’s view. It is considerable that the HTML files,
generated by server, are the only requirement for
modeling the whole web application based on this
grammar.

Fig.2 demonstrates the proposed language
grammar. The grammar is designed to model
everything like what a real user does. For example,
an element models is equivalent to a web page if
user considers it as one web page. But, if user
considers a web page with one URL as more than
one page, it should be modeled with more than one
element. This usually happens when a web page is
designed to accept some input, like ‘action’ or ‘tab’,
and generate completely different outputs based on
them.

‘Test-model,’ as shown in Fig.2, is the root
element of the model and contains any other
element.

‘Element,’ as discussed before, represents web
page from users’ view. Each web page in the system
should be represented in the model by either one or
more than one elements. However, it’s not possible
to represent different web pages by one element
because of their different URLs. The value of
parameter ‘Name’ in element ‘Element’ defines the
name with which the model refers to this element.
Parameter ‘Method,’ as its name says, defines the
method with which this element should be called. It
has either the ‘Post’ or the ‘Get’ values. ‘Constant-
params’ are defined to access a web page that is
modeled by different ‘Element’s, like the one which
accepts a ‘tab’ parameter in order to define what
page it should generate in output.

‘Validation’ defines a validation procedure
with which we could distinguish different pages
from each other. It’s important to note that
‘Element’s could have more than one validation
procedures. For example, based on the sample
defined in Fig.1, the ‘Error’ page should have two
validation procedures each of which validating one
of the error messages of the system.

‘Navigation’ defines a method to navigate from
one page to another and pass data from the source
page to destination page. It’s noticeable that,
although, ‘Navigation’s usually represent a one-to-
one relation with ‘Navigation’s of the real page;
they’re not restricted to that. Specially, when
‘Navigation’ expects some input which could be
extracted from agent’s memory it’s common to use
two different ‘Navigation’s. First type generates
inputs randomly and second type extracts these
inputs from agent’s memory.

‘Navigation’ also defines at least one ‘Page-
descriptor’ within its ‘Output’ part. ‘Page-
descriptor’s are the elements which define what

pages are expected after ‘Navigation’ is done. For
example, navigation from ‘Index’ page to ‘Search’
page only expects one page in its output and that’s
the ‘Search’ page itself. So, it should be modeled
with only one ‘Page-descriptor’. While, on the other
hand, navigation from ‘Search’ page expects more
than one page in its output, namely ‘Error’ page and
‘Search Result’ page. So, this navigation has two
‘Page-descriptor’s in its ‘Output’ part.

‘Page-descriptor’s also define more
complicated features of web application testing.
They describe some ‘Post-condition’s within
themselves. ‘Post-condition’ checks state of system
after doing the specified navigation. So, they
automate functionality test process for web
applications.

‘Memorize’ tags, which are contained in ‘Page-
descriptor’ tags, fill agent’s memory with data
which it has once came across with. In our example,
this memory contains the names and their related
phone numbers which an agent has entered the
system. While, in other web applications, it could
contain quite different pieces of information such as
usernames and passwords or the information related
to an item that it has placed in an auction.

It’s also important to note that the memory of
an agent is simply an XML structure which provides
agent with the ability of having nested structures.

The other important part of this grammar which
needs special attention is its regular expressions.
Although, the name ‘Regular-expression’ describes
what we expect from that, but the matter of
completeness made us to do some extensions to it so
that it could use the value of another variable within
itself and also it’s able to use XPath to extract data
from either the XML structure of its memory or the
XHTML structure of server’s response.

Having all these facilities for modeling a web
application enables us to model quite complicated
applications and test them automatically based on
this model. Next section contains some notes on
modeling our sample web application and how this
model could be used to generate test scenarios.

7 Case Study: Modeling and Testing

of Sample Web Application
As mentioned before, we will describe important
notes on how our sample application could be
modeled using our grammar. And more, how
different scenarios of section 4, which indicate
different complexity levels of scenarios, could be
generated automatically based on this model. First
of all, we will define the model as it seems in the
navigation diagram of section 4. After that, some

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp305-312)

parts that are needed to complete the model will be
introduced. Then, we would discuss how this model
generates those specific scenarios.

Based on the definition of our grammar and
description of our sample phone book, we should
model our application using 5 elements each of
which representing a page in our sample application.
We could also assume that the name of each element
is identical to its page name, i.e. “Search Result”
element indicates “Search Result” page.

Except “Error” element which needs two
“Validation” procedures, other elements need only
one “Validation” procedure. Besides, “Search
Result” element is the only element which its
“Validation” procedure needs input.

Other than “Index” element which contains two
navigations, which we will call “Index-Search”
navigation and “Index-Add” navigation; other
elements only need one “Navigation” tag which we
will call them using their element name, i.e. “Add
Contact” navigation for the only navigation from
“Add Contact” element.

Between these elements; there are two
elements, namely “Search” and “Add Contact”
elements, which their navigation needs “Fill-form-
data” tag.

These two elements are also the only elements
that contain two “Page-descriptor” tags in the
“Output” part of their navigations.

The “Page-descriptor” tags of these two
elements’ navigation are also the only “Page-
descriptor” tags which contain “Post-condition”
tags. Each of these “Post-condition” tags contains
steps to check the correctness of results from server.
For example; the “Page-descriptor” of “Add
Contact” navigation, which describes the branch to
“Error” page, contains steps to check whether
passing the same name to “Search” navigation
supports the idea of existence of such name or not?
If it doesn’t support this idea, i.e. no result is found
for that specific name, a bug is found in the system.

And the only “Page-descriptor” which contains
“Memorize” tags is that of “Add Contact”
navigation which describes its branch to “Index”
page. This “Page-descriptor” saves name and phone
number which were passed to

“Add Contact” navigation in agent’s memory.
Using this piece of information in agent’s memory,
agent is able to check, in future, that whether the
phone book gives that special phone number for this
name or not?

Now that we have modeled the navigation
diagram of Fig.1, we’re able to complete our model
to use agent’s memory and do more complicated
tests. So, we will add three more parts to our model
as follows.

First of all, a “Navigation” tag will be added to
“Add Contact” element, called “Memory Add,” to
check that whether the phone book allows to add a
name which was previously added or not? It’s
important to note that this navigation has only one
“Page-descriptor”. Because, by adding a name
which was added before, the system would only
navigate to “Error” page if it worked properly.

Second, a “Navigation” tag will be added to
“Search” page, called “Memory Search,” to check if
the phone book has memorized specific pieces of
information, that has previously been given to it, or
not? It’s obvious that, like previous navigation, this
navigation also has only one “Page-descriptor” tag.
Because, by searching for a name which was added
before, the system would only navigate to “Search
Result” page if it worked properly.

Third, adding the second “Navigation” makes
us to add a “Validation” procedure to “Search
Result” element. Because, the second “Navigation”
not only knows the name but also knows its
accompanying phone number. Therefore, it needs a
“Validation” procedure that takes both these
arguments together and checks both of them in the
server’s results.

Having modeled the web application
completely, it’s easy to describe how different
scenarios could be generated based on this model.
Therefore, the following paragraphs describe the
process of generating test scenarios discussed in
section 4 automatically.

First scenario, defined in section 4, could be
tested using “Validation” procedures. By examining
all different “Validation” procedures of elements
that have no input, we could define what element
we’re working on. Furthermore, if we knew what

element we’re working on, we would be able to
define whether this element is correct or not? This
would be achieved by applying all different
“Validation” procedures of that element on given
HTML for that element.

Second scenario could be tested using “Page-
descriptor” tags in “Output” part of navigations.
When we do some navigation, we expect its result to
be described using one of navigation’s “Page-

descriptor” tags. And, as shown in Fig.2, each
“Page-descriptor” tag contains an “Expected-result”
tag, which indicates a pair of “Element-name” and
“Validation” procedure. So, we could check
navigation’s HTML result with every “Validation”
that is defined in its “Expected-result” tags. If it was
not validated with none of the “Validation”
procedures, we would suppose that a bug is found in
the system. While, if it was validated with one of

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp305-312)

these “Validation” procedures, we would know the
next element which we should work on. In our
example, in section 4, if the only “Page-descriptor”
validated the HTML result of navigation from one
“Error” page, we would know that we’re in “Index”
page. But, if it didn’t validate the HTML result, we
would know that we’ve found a bug in phone book.

Third scenario, defined in section 4, could be
tested using “Post-condition” tags of “Page-
descriptor” tags. Once we know what “Page-
descriptor” validates the HTML result of server, we
could apply its “Post-condition” tags to check if the
system, as a whole, works properly or not?

Fourth scenario, defined in section 4, could be
tested using navigations that use information stored

in agent’s memory instead of randomly generated
inputs. As we discussed earlier in this section, it
would be useful to create two new “Navigation”
tags, “Memory Add” and “Memory Search”
navigations, which use information stored in
memory and have only one “Page-descriptor” in
their “Output” part. Using these two navigations, we
could easily simulate the fourth scenario defined in
section 4.

8 Implementation notes
Although it’s possible to propose lots of different
architectures to implement our grammar, Fig.3
shows our proposed architecture.

Although lots of subsystems in Fig.3 are clear,
some of them need more implementation specific
information which is included below.

“Test Scenario Generator (TSG)” generates
scenarios randomly. While, it’s designed so that it
would benefit from user session data in future.
Using user session data provides this subsystem with
the opportunity to generate more realistic test

scenarios. It also makes the results of bug reports
more clear than they were before it.

Though lots of scenarios could be generated
automatically, it’s possible to generate scenarios
manually. For this purpose, we’ve developed a
scenario description language based on what is
shown in Fig.4.

Fig. 3. Proposed architecture to implement an agent which uses a model based on our grammar as its core. Subsystems that are
surrounded by rectangle build the agent’s internal architecture. The design insists on the independency of each agent from its
environment.

Test-Scenario => { Step }
Step => Use-Navigation Expected-Result
Use-Navigation => Name { Set-Input }
Expected-Result => Element-Name Validation-Name Set-Input
Set-Input => Parameter-Definition

Fig. 4. Scenario Description Language

To generate scenarios automatically, based on
test model; we have to execute a series of actions.
First of all, a destination and a path between current
location and destination are chosen such that the

selected navigations, other than last navigation,
contain only one page descriptor. Then, the chosen
set of navigations will be executed. Therefore, the
new location will be the result of final navigation.

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp305-312)

Then, this process will be repeated for the new
location.

It should be noted that, in Test Suite Analyzer
subsystem, post conditions will be executed in
different session, from which we run main scenario
on, to assure us that the internal parameters of
server, for the session that is running main scenario,
will remain unchanged.

Currently, the “Test Failure Analyzer”
subsystem only causes a restart in scenario
generation process. But it could be used to help TSG
to examine sequences near the current sequence of
actions to find more samples of this kind of failure.
Having more samples helps future reviewers of test
results in finding the main cause of test failures.

The “Agent Behavior” subsystem defines the
routine behaviors which an agent should show. This
is an empty subsystem currently. But there’s a hope
that this subsystem could be useful in future to
simulate different types of users like experts,
novices, hackers and etc.

The subsystems of “High Level Behavior,”
“High Level Modeler” and “Test Workshop
Analyzer” are not implemented yet and so, they will
not be investigated here. They will generally be used
to simulate inter-agent behaviors. They also define
models which all agents should follow in their
behavior.

Future Works and Conclusion
As mentioned before, a number of subsystems in our
proposition are not implemented yet or incomplete
until now. Their full implementation will cover
more complicated features of web applications.

In addition, user session data could be used to
generate scenarios more realistically. User session
data could also be used in test case generation. This
way, the test cases would be more readable for
future reviewers. It is also possible to add special
behaviors to agents to simulate different types of
users like experts, novices and hackers as well as
amateurs.

There’s also a hope to generate templates of
test models automatically to help the modeling of
enterprise web applications.

Given the favorable expected status of web
applications, it is important to test them as
accurately as possible. The method proposed in this
paper presented a language to model web
applications for test purposes. The language is
designed to generate test scenarios automatically
while considering the unique properties of web
applications. It simulates users’ actions, generates
and sends requests to server, validates the server’s

responses and finds some bugs of web applications.
The proposed method supports functionality tests,
load tests, performance tests and also security tests.

References:
[1] Kirda, E.; Jazayeri, M.; Kerer,C.; Schranz, M.,

Experiences in engineering flexible web
services, IEEE Multi-Media, Jan 2001, Page(s):
58-65.

[2] Offutt, J., Quality attributes of web software
applications, IEEE Software: Special Issue on
Software Engineering of Internet Software,
March/April 2002, Page(s): 25–32.

[3] Wu, Y.; Offutt, J., Modeling and testing web-
based application, IEEE Software: Special Issue
on Software Engineering of Internet Software,
March/April 2001.

[4] Hieatt, E.; Mee, R.; Going faster: testing the
web application, IEEE Software, Volume: 19
Issue: 2, March-April 2002, Page(s): 60 –65

[5] Elbaum, S.; Karre, S.; Rothermel, G.; Improving
web application testing with user session data,
Proceedings. 25th International Conference on
Software Engineering, 3-10 May 2003 Page(s):
49 –59

[6] Jia, X.; Liu, H., Rigorous and automatic testing
of web application

[7] Extensible Markup Language (XML) 1.0,
Second Edition, W3c Recommendation, 6
October 2000

[8] Lucca, D.; Fasolino, R.; Carlini, F., Testing web
application

[9] Kung, D.; Liu, C.; Hsia, P., An object- oriented
web test model for testing Web Application

[10] Tzay, J.; Huang, J.; Wang, F.; Chu, W.,
Constructing an object-oriented architecture for
web application testing, Journal of Information
Science and Engineering, 18(1):59- 84,
Jan.2002

[11] Richardson, D., TAOS: testing with
analysis and oracle support, in proceedings of
ASM SIGSOFT International Symposium on
Software Testing and Analysis(ISSTA 94), 1994,
pp. 138-153

[12] Wu, Y.; Offutt, J., Modeling and testing
web-based application, George Mason
University

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp305-312)

