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Abstract: - Electronic tongues are systems composed by an array of sensors plus a pattern recognition for the 
evaluation of liquids. In our case, voltametric sensors are used due to their selectivity and advantages. However, 
as is explained in this paper, this kind of sensors presents several problems that can be partially solved by 
adequate signal processing techniques. The system is completed with a neural network as pattern recognition 
system plus a scheme for taking account all the information obtained from the sensors 
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1   Introduction 
Rapid and low-cost methods enabling quality 
assessment of food products are of great interest for 
the industry. Traditionally used analytical techniques 
such as HPLC are selective and reliable but they are 
quite expensive, require experienced operators and 
are difficult to be automated to develop on-site 
applications. 
    During last few years a great deal of work has 
been done in the development of systems based on an 
array of sensors plus a pattern recognition system. 
Specially interesting are those systems that try to 
imitate human senses such as those that detect 
volatile components, known as “electronic noses” [1] 
and those developed for the evaluation of liquids 
known as “electronic tongues”. 
    Basically two approaches in the design of 
electronic tongues devices are followed by using 
either potentiometric or voltametric sensors [2]. 
Voltametric sensors have been reported to show 
several advantages related to robustness and 
versatility. However, the major drawback of both 
kind of sensors is the baseline drift and lack of 
stability [3]. This is a major problem because it 
makes the response non stationary and the 
performance of the system under a real situation is 
reduced in such a way that results can be out of sense. 
    The purpose of this paper is to show how 
preprocessing the signals obtained from the sensor 
array can be used to improve the performance of 
these systems. In particular, we have applied several 
preprocessing techniques to solve problems derived 
from an array of sensors that try to classify Madrid 
wines into their different classes: red, white and rose. 
Signal processing is applied to discriminate useful 
sensors signals, to detect peaks that are going to be of 
maximum relevance in the information of the signal 

and to avoid drift effects in the measurement of the 
kinetic of the signal. 
    Finally, a classifier is used to test the performance 
in the identification. In this work we have used a 
MLP neural network [4].   
    Although the application studied in this work is the 
classification of wines, the method here proposed is 
also valid for a wide range of applications. 
 
 
2   Sensors Signals 
In the system under study, responses of an array of 
six biosensors are measured. These sensors are made 
of carbon paste which several enzymes have been 
added to [5]. The main advantage of this kind of 
sensors is that they can be made very easily with very 
low cost of manufacturing. 
    The system works as follows: There is a 
continuous flow of a tampon substance with baseline 
responses from the sensors. When the analyte, in our 
case wine, is injected there is a reaction from the 
sensors that is due to an oxidation or reduction 
process. This reaction makes a signal peak that can be 
positive or negative depending on if there is a 
reduction or an oxidation. The sensors signals 
recovers baseline depending on the analyte, giving all 
the process, peak and baseline recovery, useful 
information about the substance that has been 
injected. The process is repeated, giving a pseudo-
periodic signal over the time.    
    However, if an automated system is required, some 
issues must be taken account and corrected previous 
to the measurement process. 
 
2.1 Signal Measurements 
For every cycle of each sensor we are going to have 
an oxidation/reduction peak signal that contains rich 
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information to be evaluated. Following the references 
of [6] we can separate them in those related to the 
level of response and those that are related to the 
kinetic of the substance under study. In figure 1 it is 
shown the different measures that under a theoretical 
point of view should be extracted from every cycle of 
each sensor.  

Baseline
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Fig 1. Measures to be taken per cycle. 
   
2.2 Measurement Difficulties 
In figure 2 is represented a real experiment done with 
the array of sensors. One can appreciate in this 
realization several issues to be corrected.  
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Fig 2. Real representation of the six sensors 
 
2.1.1   Sensor Outage  
In figure 1 it can be seen how the aforementioned 
process give us so many peaks as injections have 
been carried out. 
    However, sensor 3 is clearly not responding to this 
process and only noise is reflected. As this 
experiment has been repeated under the same study 
several times, we can discard that the enzyme related 
to sensor 3 does not respond to the analyte under 
study. In fact, what it really happens is that due to the 
continuous use of the sensors, the carbon paste gets a 
lot of impurities that causes the sensor do not respond 
to the analyte injection. 

    Under this situation, an automated system must 
detect this kind of fault and taking it account, in order 
to give and alarm to change this sensor and also to 
not consider the information contained in the sensor 
for pattern recognition purposes.  
 
2.1.2 Baseline Drift 
In figure 1 can be also appreciated the baseline drift. 
Only sensor 2 keeps and stable baseline whereas the 
rest of the valid sensors, as explained sensor 3 is out 
of service in this case, have a clear baseline deviation.  
   Unfortunately, the drift behavior is unpredictable 
and can not be modeled by a mathematical function. 
This lack of stability causes a serious problem. 
However, it should be noted that we are interested in 
the baseline per cycle rather than in the global 
baseline. That is, if we appreciate sensor 4 response 
we can realize that the baseline changes abruptly, but 
the measurements described in figure 1 keep stable. 
So, the important point here is to determinate what is 
the baseline per cycle. 
 
2.1.3 Buffer Substances 
Sometimes a buffer substance is used to control the 
live activity of the enzymes. In such a case, instead of 
the analyte, wine in our case, the substance used 
makes a huge response in all the sensors. In figure 2 
there was no buffer used, but as can be appreciated in 
figure 3, at the end of the process, it has been used a 
control substance in the two last cycles, giving a 
bigger height of the peaks compared to the rest, 
where the analyte was wine. These cycles must be 
removed because they do not contain any useful 
information about the substance under study. 
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Fig 3. Real representation using buffer substance at 
the end 
 
  3 Signal Processing and Pattern 
Recognition 
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As have been described in the previous section there 
are some problems that need to be solved to 
guarantee the functionality of the system. In this 
section the solutions in the field of the signal 
processing are exposed. Finally, results of a 
classification experiment are shown using a MLP-
NN. 
 
3.1 Sensor Outage Detection 
The main feature of the signals selected as useful 
information is the periodicity of the peaks as a 
response to the analyte substance. As the system is 
fully automated the injection is done in equal time 
intervals. On the other hand, we have to think here 
also about drift and control substances presence that 
makes the signal to be no so periodical. Following 
these ideas and in order to discriminate automatically 
between those signals with useful information and 
those signals with a strange behaviour, two methods 
are proposed. 
 
3.1.1 Method Based on the FFT 
This method is straightforward once that we realize 
that the useful signals are pseudo-periodical due to 
the constant time between injections. The DFT of a 
useful signal should give us peaks around the related 
point in the spectrum and also in its harmonics. In 
figure 4 it can be appreciated a valid signal and its 
spectrum.  
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Fig 4. A useful signal and its spectrum. 
 
 On the other hand, in figure 5 a non useful 
signal and its spectrum are shown. As can be 
appreciated there is no need to calculate the whole 
spectrum but only those coefficients that are expected 
to be maximum when the signal is useful. 
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Fig 5. A non useful signal and its spectrum. 
 
    The decision about if a signal is useful or not is 
taken depending on the parameter α calculated as: 
 
  

 [ ]
N 2

0
i=1

α= E X iΩ i = 1,2,...N
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦
∑   (1) 

     
    Where N is the number of harmonics considered, 
X[k] is the kth coefficient of the DFT applied over a 
samples window and Ω0 is the principal harmonic 
associated to the analyte injection period. Note that 
we are making several FFTs over the same signal and 
calculating the mean in order to avoid those control 
peaks and noise samples.  
    If the parameter α is greater than a threshold, then 
the signal is considered as useful information, 
whereas if this parameter is lower the system should 
give an alarm because that means that the sensor is 
out of service. 
 
3.1.2 Method Based on Correlation 
Although the method based on the DFT seems to be 
optimum it has some problems regarding the drift. 
Another method to know if our signal shows 
oxidation/reduction processes is to compare it with a 
template. The covariance is defined as: 
 
 T

1 2 1 1 2 2Cov( , )= E ( - µ )( - µ )⎡ ⎤⎢ ⎥⎣ ⎦x x x x (2) 

 
    Where x1 and x2 are the vectors associated to the 
signals x1[n], x2[n] and µi is the mean of the signal 
xi[n]. Then the correlation coefficient is: 
 

 
cov( , )r =

cov( , )cov( , )
x p

x x p p
 (3) 
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Where x is the signal under study and p is the 
template used to calculate the correlation coefficient. 
It should be mentioned that opposite to the FFT 
method, where the module is invariant to signals 
shift, with this method we have to be aware of the 
possible signal shifts. Thus, we have not only to use a 
template, but also shifted versions of this template. 
The coefficient is calculated then as: 
 

 
m max

cov( , )r = arg
cov( , )cov( , )

m

m m

x p
x x p p

 (4) 

 
    Where pm is the template shifted m samples. As we 
are interested in detecting a signal with peaks, 
templates are as simple as peaks separated by T 
samples. In this method we have also considered to 
take windowed signals and templates of a length of 
the window.  
   So, the whole signal is divided in windowed signals 
and the correlation coefficient as defined in eq. 4 is 
calculated for each of them. Then, the parameter α is 
defined as: 
 
 [ ]iα= E r i = 1,2,3...l,  (5) 
Where ri is the coefficient calculated over the 
window i and l is the number of windows. 
 
3.1.3 Results for Sensor Outage Detection 
In table 1 it is shown the results obtained with the two 
methods described. Both methods were tested on 420 
signals where it was known if they belong to useful 
signals or not. Results show us the probability of 
success in detecting a useful signal. 
 

 White Red Rose 
FFT  
Method 

80 % 84 % 84 % 

Correlation 
Method 

92 % 93 %  87 % 

Table 1. Comparing methods for sensor outage 
detection 
 
    Results show a better behaviour of the correlation 
method. However, this method is very expensive 
under a computational point of view. 
 
3.2 Peak Detection. 
Peak detection has a double function. On one side it 
is useful to detect those samples considered as peaks, 
as they could indicate that there is a control cycle. On 
the other hand, it is necessary to have this 
information to take the measurements described in 
section 2.1. 

    The method used to detect peaks is a correlation 
method. The process is quite similar to the one 
exposed in the correlation coefficient method, but 
now templates are built with the number of samples 
per cycle, and the search is done only around ± 5 
samples. The pseudo-algorithm is as follows: 
 

1. Detect first peak. 
2. Average peak ← first peak value 
3. Search for next peak around T samples later. 

If (abs(peak value)> 1.4 average peak) 
 Control cycle detected 
 Remove control cycle 
Else 
 Update average peak 
 Store the peak value and index. 

4. Until the end of process repeat step number 3. 
 
    Once the peak is found and control cycles have 
been removed, we have to proceed to take the 
measures described on section 2.1. Note that for all of 
them it is necessary to know where the peak is 
located and, for measures 1 and 2, it is very important 
to know the baseline reference.  In figure 6 are 
represented 3 cycles of a signal, that has been 
determined as useful, and the peaks (negative in this 
case as this is a reduction) detected. It can be seen 
that the baseline must be also estimated. The baseline 
associated to the kth peak is calculated as: 

 1

2
k

k
kBS BSB − +=  (6) 

    Being BSk the mean of the last samples previous to 
the following peak. For the first estimation we have 
considered it as BS1. 
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Fig 6. Peaks detected on a real signal and base line 
estimation. 
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   Measures 1 and 2 are then easily extracted for every 
cycle. Measure 3 is related to the shape of the 
recovery signal. As we are going to compare in this 
case shapes and not values a normalization of the 
signal is needed, as described in [7]. In figure 7 is 
shown several shapes taken from the sensor 1 for 
white wines. 
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Fig 7. Shape recovery for white wine. 
 
 3.3 Pattern Recognition 
In this stage and with the measures taken, the system 
proceeds to recognize the information in order to 
classify it into the different kinds of wine. 
  
3.3.1 Candidate per Cycle 
Every single cycle proposes a candidate based on the 
information that has been obtained on the processing 
stage. This candidate is proposed according to the 
scheme presented in figure 8, where I1 is a six feature 
vector composed by the 6 values, one per sensor, 
obtained as measure number 1. If a signal sensor was 
discarded due to sensor outage, then we have to be 
aware of it, since the feature associated to that sensor 
is null. In such a case, the choice taken is to assign a 
mean value in order to minimize the influence of that 
feature.  I2 is also a vector composed by 6 features, 
but in this case instead of the measure 1 is composed 
by the 6 values obtained from measure 2. I3 to I8 are 
composed by the recovery signals of every sensor. 
Each vector is composed by 40 samples taken just 
after the peak detection. In these cases, if there is a 
sensor outage, the neural network output is not 
considered for the voting. 
   Tables 2 to 9 show the confusion matrixes obtained 
for every neural network. Different elements of the 
tables are P(Di/Hj), that is, the probability of getting 
an output Di under the hypothesis Hj. A ideal matrix 
confusion is the identity one.  
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Fig 8. Scheme proposed per cycle. 
 

I1 White Rose Red 
White 0,889 0,000 0,111 
Rose 0,371 0,577 0,052 
Red 0,000 0,214 0,786 

Table 2. Confusion matrix for the measure 1. 
 

I2 White Rose Red 
White 0,789 0,053 0,158 
Rose 0,253 0,672 0,075 
Red 0,111 0,365 0,524 

Table 3. Confusion matrix for the measure 2. 
 

I3 White Rose Red 
White 0,545 0,131 0,323 
Rose 0,021 0,979 0,000 
Red 0,276 0,133 0,592 

Table 4. Confusion matrix for the sensor shape 
recovery in sensor 1. 
 

I4 White Rose Red 
White 0,687 0,212 0,101 
Rose 0,000 1,000 0,000 
Red 0,162 0,027 0,811 

Table 5. Confusion matrix for the sensor shape 
recovery in sensor 2. 
 

I5 White Rose Red 
White 0,755 0,122 0,122 
Rose 0,080 0,800 0,120 
Red 0,900 0,040 0,060 

Table 6. Confusion matrix for the sensor shape 
recovery in sensor 3. 
 

I6 White Rose Red 
White 0,990 0,010 0,000 
Rose 0,170 0,766 0,064 
Red 0,261 0,065 0,674 

Table 7. Confusion matrix for the sensor shape 
recovery in sensor 4. 
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I7 White Rose Red 
White 0,778 0,030 0,192 
Rose 0,191 0,596 0,213 
Red 0,408 0,061 0,531 

Table 8. Confusion matrix for the sensor shape 
recovery in sensor 5. 
 

I8 White Rose Red 
White 0,778 0,030 0,192 
Rose 0,191 0,596 0,213 
Red 0,408 0,061 0,531 

Table 9. Confusion matrix for the sensor shape 
recovery in sensor 6. 
 
3.3.2 Global Classification. 
Once that every single cycle has proposed a candidate 
it can be determined what kind of wine is under the 
experiment. The output decision is also made by a 
voting scheme where every circle represents a 
candidate per cycle obtained as has been described in 
the previous section. 
  The output given will have a confidence depending 
on the number of votes that has obtained the winner. 
Low confidences mean that, although there was a 
winner, the candidates are scattered. In  figure 9 is 
represented the confidence of the true output. 
Confidences bellow 33 % in this graphic mean that 
the system is wrong, since other candidate have been 
proposed. Confidences above the 85 % are 
considered as good results because most of the cycles 
have voted for the right candidate. 
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 Fig 9. Confidences of the test experiments.  
 
 
4   Conclusion 
   In this work we have presented several advances in 
the signal processing field for an electronic tongue, 
from the sensor outage detection to the measurement 

automatization. Not only peak responses have been 
considered but also measures related to the kinetic. 
   This work is completed with the classification of 
the wines using a MLP NN. Results show us a good 
global performance but in order to develop a 
commercial system they must be improved to ensure 
the reliability of the system.  
Further work will try to obtain better results by 
improving the detection of sensor outage, and 
specially testing other learning systems and voting 
schemes. It is needed also to test the behavior of the 
system when testing with other wines with different 
taste.  
   There is also a good field to exploit in recognizing, 
not only the kind of wine, but the origin of the wine 
that would be useful to determine if a wine has the 
properties expected to a selected region. Other 
industrial applications such as residual waters 
analysis, olive oil quality or marketing improvements 
for drinks open a huge field to research. 
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