
Domain ontology based object-oriented and relational databases

J. SEBESTYÉNOVÁ
Institute of Informatics

Slovak Academy of Sciences
Dúbravská cesta 9, 845 07 Bratislava

SLOVAKIA
 http://www.ui.sav.sk

Abstract: - The paper describes incorporation of ontology in database of decision support system. Implementation of
persistent knowledge-base can be done using relational as well as object-oriented database. Creation of database
schema according to classes with their specific properties and slots of domain ontology is described for both types of
databases. Besides the database maintenance problems, various possibilities of database reasoning are shortly
described.

Key-Words: - Ontology, Intelligent agents, Distributed computing and distributed databases, Decision support system

1 Introduction
Two entities can communicate only if they agree upon
the meaning of the terms they use. Ontology, understood
as an agreed vocabulary of common terms and meanings
shared by a group of people, is a solution to that
problem.
 In order for an agent to make statements and ask
queries about a subject domain, it must use a
conceptualization of that domain. A domain
conceptualization names and describes the entities and
the relationships among those entities that are to be
considered in that domain. It therefore provides a
vocabulary for representing and communicating
knowledge about the domain.
 Explicit specifications of domain conceptualizations,
called ontologies, are essential for the development and
use of intelligent systems as well as for the
interoperation of heterogeneous systems. They provide a
vocabulary for a domain and can be used as building
block components of knowledge bases, object schema
for object-oriented systems, conceptual schema for data
bases, structured glossaries for human collaborations,
vocabularies for communication between agents, class
definitions for conventional software systems, etc.
 Ontology construction is difficult and time
consuming. This high development cost is a major
barrier to the building of large-scale intelligent systems
and to widespread knowledge-level interactions of
computer-based agents. Since many conceptualizations
are intended to be useful for a wide variety of tasks, an
important means of removing this barrier is to encode
ontologies in a reusable form so that large portions of
ontology for a given application can be assembled from
existing ontologies available from ontology libraries.
Intelligent systems are characterized by their ability to
effectively reason with their knowledge.

 Computer-understandable ontologies are represented
in logical languages, such as the W3C OWL (Ontology
Web Language) and the draft ISO standard, SCL
(Simple Common Logic). However, logical languages
are only a means to express content. Ontology is one
way to use language and logic more effectively.
 There is mounting psychological evidence that human
cognition centrally involves similarity computations over
structured representations, in tasks ranging from high-
level visual perception to problem solving, learning, and
conceptual change. Understanding how to integrate
analogical processing into AI systems seems crucial to
creating more human-like reasoning systems [5]. Yet
similarity plays at best a minor role in many AI systems.
Most AI systems operate on a first-principles basis,
using rules or axioms plus logical inference to do their
work. Those few reasoning systems that include analogy
tend to treat it as a method of last resort, something to
use only when other forms of inference have failed.
 The exceptions are case-based reasoning systems,
which started out to provide computational mechanisms
similar to those that people seem to use to solve
everyday problems. Unfortunately, CBR systems
generally have the opposite problem, tending to use only
minimal first-principles reasoning. Moreover, most of
today’s CBR systems also tend to rely on feature-based
descriptions that cannot match the expressive power of
predicate calculus. Those relatively few CBR systems
that rely on more expressive representations tend to use
domain-specific and task-specific similarity metrics.
This can be fine for a specific application, but being able
to exploit similarity computations that are more like
what people do could make such systems even more
useful, since they will be more understandable to their
human partners. While many useful application systems
can be built with purely first-principles reasoning and

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp324-329)

Figure 1 Ontology creation in Protégé

with today’s CBR technologies, integrating analogical
processing with first-principles reasoning will bring us
closer to the flexibility and power of human reasoning.
 One of the bottlenecks in the creation of AI systems
is the difficulty of creating large knowledge bases. There
have been a number of systems that capture some
aspects of reasoning by analogy. No previous analogy
systems have been successfully used with multiple, large
general-purpose knowledge bases created by other
research groups. While the majority of today’s CBR
systems have moved to feature-vector representations,
there are a number of systems that still use relational
information.

2 Domain Ontology
We can consider an ontology as a collection of
agreements upon a vocabulary of common terms and
meanings in some domains. Concept is an entity
representing some "thing", the actual entity in the real
world.
 There are two kinds of conceptual knowledge:
concept and set. A concept is defined by the essence of

the objects it subsumes and not by their state. Such a
definition allows us to focus on the essence of the
concepts and not on their state. An essence is invariant,
which is not the case of state. On the other hand, a set
makes it possible to put together objects whose state
shares some common properties. For instance, if
“Human Being” refers to a concept, “Teenagers” refers
to a set composed of human beings whose age is in given
constraints.
 Differences are the elementary units from which the
meaning of terms is built. This means they have no
meaning in themselves. A difference belongs to the
essence of objects. Unlike an attribute it cannot be
removed from the definition of an object without
changing its nature; nor can it be valued. For example,
for human beings “mortal” is a difference whereas “age”
is an attribute.
 A difference is a unit that builds meanings and
divides concepts. Adding a difference to an existing
concept makes it possible to create two new ones, the
first to which it belongs and the second which will never
be able to own it. That difference is called the specific
difference of the former new concept. This is the reason

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp324-329)

why differences are defined by couple of opposite
differences, like “mortal” and “immortal”. Thus, owning
a difference for a concept implies it will never contain
the opposite difference, nor the concepts it could
subsume.
 Ontology terms are organized in structures called
directed acyclic graphs where nodes can have multiple
parents [7]. Ontologies can be considered as a set of
concepts, which are connected by binary relations.
Concepts are well-defined entities: they have a unique
meaning, properties like a name (label), a description
and an identifier. Fig. 1 shows, for example, the
ontology created in Protégé tool [11].
 Main directions in usage of ontologies are:
- Semantic web (computer – understandable

semantics)
- Multi-agent systems communication (meaning of

sent and received messages)
- Database systems (in the process of distributed

databases reasoning, and/or in the process of
ontology-based database creation).

 There exist many large database systems (some of
them with partially conjunctive domains), but searching
any information in such distributed databases seems to
be intractable, because of different database schemas.
Definition of the domain ontology with properly given
similarity relations (or equality relations, such as
“same as”) between concepts may solve the problem.
Queries to databases need to be modified according to
the defined domain ontology, which can be done
automatically. This approach is usable for simple queries
[3], [6].

3 Ontology - based Databases
Another way to incorporate the ontology in database
system is to create a database schema with respect to
given domain ontology.
 An entity-relationship diagram represents data model
of a relational database. ER model can also represent
concepts and relationships in the ontology (as a set of
nodes, which are connected by edges). However, a tree
or a net representation of the ontology is needed when a
user browses an ontology, or when all "child nodes" of a
given hierarchy have to be selected. The basic concept of
ER modeling is not powerful enough for such complex
applications and additional semantic modeling concepts
are required:
- Specialization
- Generalization
- Categorization
- Aggregation.
Some new entity constructs are still needed:

- Superclass - an entity type that includes distinct
subclasses that require to be represented in a data
model

- Subclass - an entity type that has a distinct role and
is also a member of a superclass.

 If we focus on the representational aspects, the
domain ontology can be viewed as a knowledge-based
system using the following entities:
- Concepts,
- Cases,
- Schemes,
- Associations.
 A straight comparison between a DB and an ontology
needs to take the nature of the data into account. The
advent of object orientated databases, improved logics
and faster inference is making the distinction between
DBs and ontologies more fuzzy.
 Real-world semantics (term used in literature on
semantic integration of databases) corresponds to the
concepts in the real world that the objects in the model
refer to. This type of semantics involves human
interpretation (or meaning) and use of data or
information. A huge role of ontology is not so much for
processing, but for sharing meaning and for improving
tacit knowledge transfer.
 The DB schema is the structure of data, whereas the
data are the facts. We can map the data structures in the
database to ontology: table ↔ class, table column ↔
property, value of table column ↔ literal or resource,
foreign key ↔ property pointing to other resource, table
row ↔ instance of class.

3.1 Relational DB
Relational databases are the most common DB today. If
we want to create the relational database schema
according to a given domain ontology, first we have to
create a table (or tables) of properties with all of their
possible values. Secondly we have to create a table for
representing the given class of the ontology. An instance
of the class (individual) will be represented as a row in
the table, and it will be characterized by the properties
with given values (valuation is restricted to previously
specified possible values). Such approach can provide
variable creation of database schema from an
application, though it is not usual or obvious for
relational databases.
 In order to create a database schema according to the
given class of the domain ontology, algorithm of the
database creation and manipulation part of the
application follows these steps:
1. Create the table of properties with N+2 columns

named: property_name, number_of_allowed_values,
allowed_value_1, … , allowed_value_N, where N is
maximum of the properties cardinality (specified
previously).

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp324-329)

Figure 2 Creation of ontology-based relational database in MySQL - tables of properties and class individuals

2. Provide interface to specification of some properties

that will be written into the table as rows. This step
can work with GUI, or by automatic translation of
slots from the ontology.

3. Create the table of the class, that will be
characterized by above specified properties, i.e.
column names have to be read from the other table
(all values of property_name).

4. Provide GUI for specification of class individuals
that will be written into the table as rows. For all of
the properties, user can select valuation from the
previously specified allowed values.

 Fig. 2 shows a table of properties and a table of the
class in MySQL. For illustration, the class of discrete
event systems model requirements has been used, which
is the class of control theory domain ontology.

3.2 Object - oriented DB
Object-oriented DBs have many useful features:
inheritance, classes, methods, associations, overloading,

close links with OO programming languages, types,
persistence, OQL.
 New SQL standards utilize object - relational
extensions: excellent performance results, well
understood technology, good portability. Most problems
which were considered OO only are relatively easy to
implement on OR technology.
 A task of creation of the database schema according
to the classes of the domain ontology is easier in case of
OO DB than in relational DB. For illustration, Fig. 3
shows this in JADE development environment [4] for
developing applications using OO DB. JADE enables us
to model and construct information systems in terms of a
set of self-contained components called objects. JADE
object model combines data and operations into objects,
uses messages to communicate between objects, groups
similar objects into classes, and maintains a class
hierarchy to provide inheritance of data and procedures.
 JADE provides the RootSchema, which is always at
the top of the schema hierarchy. The RootSchema
provides essential system classes, e.g. the Object class -

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp324-329)

Figure 3 Creation of ontology-based object-oriented database in JADE

root of the class hierarchy, Collection classes, and the
File, Exception, and Form classes. Because these classes
are defined in the RootSchema, they can be accessed
from all subschemas.
 An object is any entity, either real or abstract, that
exhibits some well-defined behavior and that has a
unique identity. A class groups all objects that share the
same set of properties and methods. Every object is an
instance of one, and only one, class. A class describes
common characteristics of a set of objects. An object is
often referred to as an instance of the class that describes
it.
 Properties (attributes and references) represent the
internal data storage of an object. The state of an object
at any time is determined by values stored in each of its
properties. Properties can be:
- Attributes: primitive variables such as numbers,

strings, or Boolean values (e.g. age, name, and
gender)

- Single-valued references: references to other objects
- Multiple-valued references: references to collections

of other objects (for example, a collection of
employees in a company object).

4 Decision support system
A knowledge base of a multi-agent system contains an
ontology-based representation of the data relevant to the
structure of the domain as well as supplementary
functional data. For example, an agent-based decision
support system using rule-based deductive reasoning is
described in [12].
 Decision theory is a means of analyzing which of a
series of options should be taken when it is uncertain
exactly what the result of taking the option will be.
Decision theory provides a powerful tool with which to
analyze scenarios in which an agent must make
decisions in an environment.

4.1 DB Reasoning
Forward chaining is an example of the general concept
of data-driven reasoning - that is, reasoning in which
the focus of attention starts with the known data. It can
be used within an agent to derive conclusions from
incoming percepts, often without a specific query in
mind. New facts can be added to the agenda to initiate
new inferences.

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp324-329)

 The backward-chaining algorithm, as its name
suggests, works backwards from the query. If the query
q is known to be true, then no work is needed.
Otherwise, the algorithm finds those implications in the
knowledge base that conclude q.
 Backward chaining is a form of goal-directed
reasoning. It is useful for answering specific questions
such as “What shall I do now?” Often, the cost of
backward chaining is much less than linear in the size of
the knowledge base, because the process touches only
relevant facts. In MAS, an agent should share the work
between forward and backward reasoning, limiting
forward reasoning to the generation of facts that are
likely to be relevant to queries that will be solved by
backward chaining.
 In most case-based reasoning systems, cases are
stored as named collections of facts in a memory. They
are designed for a specific range of problems. Each case
is a set of features, or attribute-value pairs, that encode
the context in which the ambiguity was encountered. The
case retrieval algorithm is mostly a simple k-nearest
neighbors algorithm. The basic case-based learning
algorithm performs poorly when cases contain many
irrelevant attributes. Unfortunately, deciding which
features are important for a particular learning task is
difficult.

4.2 Active DB
Relational as well as OO DB systems posses a
possibility of simple kind of event-driven processing [1],
[2]. At a time instant specified in DB or after a given
time interval elapse, an event occurs which subsequently
starts an action (or activity). It can be used, for example,
to automatically send e-mail containing relevant
information reasoned from the knowledge-base
according to the given context [8, 9, 10] and event.

5 Conclusion
Development of persistent knowledge-base for decision
support systems was described. Creation of database
schema according to concepts and their relations in
domain ontology was described for relational and object-
oriented databases. Besides the database maintenance
problems, various possibilities of database reasoning
were shortly mentioned.

Acknowledgements
The author is grateful to the Slovak Science and
Technology Assistance Agency (grant No. APVT-51-
024604 RAPORT) for partial support of this work.

References:

[1] Dayal U., E. Hanson, J. Widom, Active database
systems, In: Modern Database Systems, W. Kim
(Ed.), Addison-Wesley, Reading, MA, 1995, pp.
434–456.

[2] Dix J., S. Kraus, V.S. Subrahmanian, Temporal
agent programs, Artificial Intelligence 127 (2001),
pp.87–135.

[3] Greer D. S., B. Ludaescher, D. Fils, Ch. Baru, An
ontology for integrating stratigraphic databases,
Proc. Denver Annual Meeting, November 7–10,
2004.

[4] JADE: http://www.jadeworld.com/
[5] Kenneth D. Forbus, Thomas Mostek, Ron Ferguson,

An analogy ontology for integrating analogical
processing and first-principles reasoning, 2002,
American Association for Artificial Intelligence,
www.aaai.org.

[6] Kerschberg L., M. Chowdhury, A. Damiano, H.
Jeong, S. Mitchell, J. Si, and S. Smith, Knowledge
Sifter: Ontology-Driven Search over Heterogeneous
Databases, http://eceb.gmu.edu/

[7] Kohler J., M. Lange, R. Hofestadt, S. Schulze-
Kremer, Logical and Semantic Database Integration,
Proceedings of the IEEE Symposium Bioinformatics
and Biomedical Engineering, Eds. Danielle C.
Young, Arlington, Virginia, USA, 8-10 November
2000.

[8] Laclavík M., Z. Balogh, L. Hluchý, R. Słota, K.
Krawczyk, M. Dziewierz, Distributed Knowledge
Management based on Software Agents and
Ontology. Proc. 5th Int. Conf. on Parallel Processing
and Applied Mathematics PPAM'2003, (ed.
R.Wyrzykowski et.al.), 2004, LNCS 3019, Springer-
Verlag, pp. 694-699, ISSN 0302-9743, ISBN 3-540-
21946-3. September 2003, Czestochowa, Poland.

[9] Laclavík M., Z. Balogh, L. Hluchý, K. Krawczyk,
M. Dziewierz, J. Kitowski, M. Majewska,
Knowledge Management for Administration
Processes, Proc. of Znalosti 2004, February 2004,
pp.248-255. ISBN 80-248-0456-5.

[10] Lambert S., S. Stringa, G. Viano, J. Kitowski, R.
Slota, K. Krawczyk, M. Dziewierz, S. Delaitre, M. B.
Oroz, A. C. Gómez, L. Hluchý, Z. Balogh, M.
Laclavík, M. S. F. Caparrós, M. Fassone, V.
Contursi, Knowledge Management for
Organisationally Mobile Public Employees, Proc. of
KMGov 2003, Rhodes Island, Greece, LNCS 2645,
Springer-Verlag, pp. 203-212, ISSN 0302-9743,
ISBN 3-540-40145-8.

[11] Protégé: http://protege.stanford.edu/
[12] Sebestyénová J., Design and Verification of an

Agent-based System, In: Proc. 8th WSEAS Int.
Conference on Computers CSCC 2004, Athens, July
2004, 6 pages, CD, ISBN: 960-8052-99-8.

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp324-329)

