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Abstract: - Since deconvolution is a recurring theme in a wide variety of signal and image processing applications, many
algorithms have been proposed to address this problem. In particular, in ultrasound imaging, deconvolution is often applied
as a fundamental step either for contrast enhancement or as preprocessing in segmentation procedures. In this work we
present a comparative study between two wavelet-based deconvolution algorithms as tools for processing ultrasound images,
one based on a minimization of an error energy term, the other performing a two-step regularization procedure on both the
Fourier and Wavelet domain. The comparison is made in terms of Mean Square Error (MSE) and Signal to Noise Ratio
(SNR) calculated on synthetic signals. Moreover, we estimate the computational cost and we provide processed B-mode
images through which background noise smoothing and edge sharpness enhancement could be qualitatively evaluated.
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1 Introduction

Ultrasound images are extensively used as a diagnostic in-
strument in many fields, especially in medicine [1, 2, 3].
As the ultrasound transducer introduces an unwanted spec-
tral shaping of the backscattered echo signal, deconvolu-
tion is used to eliminate this effect and to obtain the pure
tissue response. A convenient model to represent RF echo
signal y(n) at the transducer output involve the convolu-
tion between the tissue reflectivity function x(n) and the
transducer impulse response g(n):

y(n) = x(n) ∗ g(n) + γ(n) (1)

were γ(n) is a zero-mean additive Gaussian noise
(AWGN) term with variance σ2 [7] and ∗ denotes the the
convolution operation. Given y(n) and g(n), deconvolu-
tion algorithms seek to estimate x(n). A naı̈ve deconvolu-
tion estimate x̂(n) can be obtained by simply convolving
y(n) with an approximation of the inverse transducer im-
pulse response ŵ(n) so that

g(n) ∗ ŵ(n) = δ(n− n0)

and
x̂(n) = x(n− n0) + γ(n) ∗ ŵ(n) (2)

where δ(n) is the Kronecker delta function and n0 is the
time-delay when the impulse response is non-minimum
phase. Unfortunately, the variance of the colored noise
γ(n)∗ ŵ(n) in x̂(n) is large when the inversion process in-
volving g(n) is ill conditioned as well as the Mean Square
Error (MSE) between x̂(n) and x(n), making x̂(n) an un-
satisfactory deconvolution estimate. In general, deconvo-
lution algorithms can be interpreted as estimators of x(n)
from the noisy signal x̂(n) in (2).

The presented deconvolution algorithms exploit the
fact that the tissue response x(n) can be economically rep-
resented in the Wavelet domain, which means that fewer
transform-domain coefficients are needed to capture sig-
nal features. From another standpoint, the tissue response
x(n) can be modeled as a 1/f type process due to the com-
plex structure of the echo scatterers in the tissue [10]; the
generalized power spectrum Sx(ω) of such a process obeys
a to the following power law [9, 11]

Sx(ω) = σ2
x|ω|β−1 (3)

where σ2
x is the variance of the signal x(n) and β is a scal-

ing parameter in the range −1 ≤ β ≤ 1. Using this model,
the variance of the Wavelet signal coefficients xj(n) can
be shown to be

var{xj(n)} = σ2
w2−jβ (4)

where j is the scale index and σ2
w a constant related to

the variance of the signal σ2
x and the Wavelet function

used in the Wavelet Decomposition process [10]. By tak-
ing the logarithm of (4), a linear relationship between the
Wavelet scale and the logarithm of the variance of input
signal Wavelet coefficients is obtained. This relationship
can be exploited to improve the estimate of the tissue re-
sponse x(n).

In the following sections we summarize the main fea-
tures of the considered algorithms.

2 Wavelet Domain Least Squares
Deconvolution

The Wavelet Domain Least Squares Deconvolution algo-
rithm (WLSD) [5] uses equation (4) to drive a gradient
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based optimization technique, minimizing an error energy
term ε. Starting from the Wavelet series Xj(k) of the
discrete-time signal x(n), the Wavelet coefficients at each
scale j can be written in the matrix and vector notation as

Xj = Hjx, j = 1, . . . , J (5)

where Hj is a convolution type matrix whose elements
corresponds to the equivalent filter coefficients for the j-
th scale, x is the signal vector and J is the total number
of scales. In absence of noise (γ(n) = 0) the Wavelet
coefficients X̂j at each scale of the approximative tissue
response estimate x̂ can be expressed in function of known
parameters:

X̂j = Djŵ, j = 1, . . . , J (6)

where Dj is a matrix dependent on Hj and on observation
y, while ŵ is the approximation of the inverse filter vector.

The most important task in determining the energy
error is computing variance Vj of Wavelet coefficients X̂j

at the j-th scale:

Vj =
X̂T

j X̂j

Nj − 1
=

ŵT DT
j Djŵ

Nj − 1
= ŵT Cjŵ (7)

where Nj is the number of Wavelet coefficients at the j-th
scale.

The energy error depends on the difference from lin-
earity of the logarithmic variance progression at each scale
of the Wavelet Transform together with the difference from
an impulsive function of the convolution of the estimated
inverse filter with the transducer impulse response:

ε(ŵ, α̂, β̂) =
J∑

j=1

(
log2(ŵ

T Cjŵ)− (α̂− jβ̂)
)2

+

+(Gŵ − δ)T (Gŵ − δ) (8)

In this formula β̂ and α̂ are the estimates of the scaling pa-
rameter and of the energy parameter α = log2(σ2

w) respec-
tively, and G is the convolution matrix for the transducer
impulse response and δ = [0 . . . 0 1 0 . . . 0]T . The energy
error is used to drive an iterative minimization technique
based on the conjugate gradient. In order to speed-up al-
gorithm convergence, the gradient and the Hessian matrix
of the error energy ε(ŵ, α̂, β̂) should be obtained algebri-
cally; additionally, ad-hoc proconditioners can be used to
further reduce the estimation time. Good guess for the first
iteration are ŵ = G†δ, α̂ = 0 and β̂ = 0.

This algortithm gives really good results whenever
the white gaussian noise γ(n) in the model (1) is negli-
gible when compared to the tissue impulse response x(n).

3 Fourier-Wavelet Regularized
Deconvolution

The Fourier-Wavelet Regularized Deconvolution algo-
rithm (FWRD) [4] consider the RF echo transducer as a

linear time-invariant system H whose impulse response,
accordingly to (1), is g(n). Scalar shrinkage is used in
both Fourier and Wavelet domains to obtain a good esti-
mation of x(n) from x̂(n): this double-domain technique
allows for an optimized representation of both the input
signal x(n) and the contaminating noise γ(n), since x(n)
is better represented in the Wavelet domain while γ(n) in
the Fourier domain.

Given an orthonormal (Fourier or Wavelet) basis
{bk}N−1

k=0 for RN , x̂ from (2) can be expressed as

x̂ =
N−1∑

k=0

(〈x, bk〉+ 〈ŵ ∗ γ, bk〉
)
bk (9)

where ŵ is again the inverse transducer impulse response.
An improved estimate x̂λ can be obtained by simply
shrinking the k-th component in (9) with an appropriate
scalar λk with 0 ≤ λk ≤ 1:

x̂λ =
N−1∑

k=0

(〈x, bk〉+ 〈ŵ ∗ γ, bk〉
)
λkbk (10)

The parameter λk should be taken close to 1 whenever
noise energy is negligible compared to signal energy, and
close to 0 in the reciprocal case. The shrinkage by λk can
also be interpreted as a form of regularization for the de-
convolution inverse problem [12].

In the Fourier domain, model (1) can be written as

Y (fk) = H(fk)X(fk) + Γ(fk) (11)

where Y , H , X and Γ are the N-length Discrete Fourier
Transform (DFT) of y, h, x and γ respectively, while fk =
πk/N , k = 1, . . . , N are the normalized DFT frequencies.
Rewriting (2) in the Fourier domain we obtain

X̂(fk) = X(fk) +
Γ(fk)
H(fk)

=
Y (fk)
H(fk)

(12)

and the DFT X̂λf (fk) of the Fourier shrinked estimate can
be written as

X̂λf (fk) =
Y (fk)H∗(fk)
|H(fk)|2 + τ

(13)

where τ > 0 is a regularization parameter which can be
optimized in order to minimize the Mean Square Error
(MSE) between the tissue reflectivity function x(n) and its
final estimate x̂(n) after both Fourier and Wavelet shrink-
ing have been applied [14]. Since in real cases x(n) is not
available, τ is set to minimize the MSE between y(n) and
its estimate ŷ(n) generated from x̂(n).

The following Wavelet shrinking process involves the
Discrete Wavelet Transform (DWT) of the signal x̂λf (n)
obtained from the inverse DFT of X̂λf (fk). The final esti-
mate x̂(n) is obtained by applying the Inverse DWT to the
shrinked Wavelet and scaling coefficients.
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Original WLSD FWRD
Nx SNR SNR MSE SNR MSE
64 80 58.42 1.796 · 10−6 12.22 0.074775
64 50 30.31 0.0011611 12.2 0.075197
64 20 −2.61 2.2753 10.81 0.10346
128 80 51.32 3.3274 · 10−6 14.78 0.015
128 50 24.43 0.00163 14.64 0.015499
128 20 −7.89 2.7743 8.91 0.058007
256 80 51.03 9.0354 · 10−6 21.98 0.0072612
256 50 26.93 0.0023203 21.65 0.0078378
256 20 −5.54 4.0977 11.23 0.086277

Table 1: Comparison between WLSD and FWRD: WLSD
performs better in low noise environments, while FWRD
gives more accurate results when noise is higher.

4 Comparison between WLSD and FWRD
algorithms

Implementation of both WLSD and FWRD algorithm have
been tested on simulated 1/f signals, convolved with a
typical trasducer impulsive response and corrupted with
additive white Gaussian noise. For all signals the effect of
length and initial SNR have been tested. The obtained es-
timates x̂(n) have been compared to original signals x(n),
by measuring final SNR and MSE:

SNR = 10 log10

( ‖x‖2
‖x̂− x‖2

)
dB

MSE = E(|x̂− x|2)
(14)

In the next subsections, some important differences be-
tween WLSD and FWRD and the computational cost of
the two algorithms are shown.

4.1 Simulations Results

The comparison between FWRD and WLSD was made
evaluating the deconvolution performance on different 1/f
signals, with number of sample 64, 128 and 256 and with
different SNR, from 20 to 80 dB. Simulation results, sum-
marized in Tab. 1, show that in presence of low noise,
WLSD provides more precise estimates than FWRD and
produces an excellent tissue response reconstruction with
a very low MSE. On the contrary, when noise is large
(SNR< 30 dB), WLSD fails in recovering the original sig-
nal, while FWRD is able to reconstruct the shape of the
tissue response, although it yields less exact estimates than
the previous case.

An example is shown on Fig. 1 where a 128
samples 1/f signal, its corresponding observation with
SNR = 80 dB and WLSD and FWRD deconvolution re-
sults are plotted. In Fig. 2 the same original signal and
observation with SNR = 20 dB is shown. In this case the
failure of WLSD deconvolution is evident.

Original signal

Blurred and Noisy observation

Fourier−Wavelet Regularized Deconvolution , SNR =14.78dB MSE = 0.014999

Wavelet Domain Least Squares Deconvolution , SNR =52.02dB MSE = 2.8331e−006

Figure 1: Deconvolution of an high SNR blurred and noisy
observation: WLSD performs better than FWRD, achiev-
ing an MSE lower than 3 · 10−6 and an SNR higher than
50 dB.

Original signal

Blurred and Noisy observation

Fourier−Wavelet Regularized Deconvolution , SNR =8.81dB MSE = 0.059405

Wavelet Domain Least Squares Deconvolution , SNR =−5.63dB MSE = 1.6506

Figure 2: Deconvolution of a low SNR blurred and noisy
observation: FWRD performs better than WLSD, achiev-
ing an MSE lower than 6 · 10−2 and an SNR higher than
8 dB.
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Figure 3: Estimated transducer pulse used in both decon-
volution algorithms
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Figure 4: In-vivo image of a prostatig gland affected by
carcinoma; the unhealty zone is visible in the left side of
the image.

4.2 Computational Cost

Both the algorithms rely on the multiresolution properties
of the Wavelet Transform whose computation is very ef-
ficient: for discrete-time signals with N samples, the N
Wavelet coefficients can be computed in O(N) operations
using a filterbank consisting of lowpass filters, highpass
filters, upsamplers and decimators [13].

WLSD is composed of an initialization part in which
the calculation of Dj and Cj is performed. Such task is
quite honerous and depends on the inverse filter length Nw,
on the observed signal length Ny and on the trasducer re-
sponse length Nh linearly. Instead, in WLSD iterations,
gradient and Hessian matrix computation are the most time
consuming operations. The computational cost of WLSD
algorithm could be extimated by the following expression:

O((Nw + Ny)3 log2(Ny)) (15)

As regards FWRD algorithm the most honerous operations
are FFT and IFFT calculation, which only depend on the
observed signal length. Consequently the computational
cost of FWRD algorithm has the following expression:

O(Ny log2(Ny)) (16)

As a consequence FWRD algorithm is less sensitive than
WLSD to an increase of Ny .

Figure 5: WLSD processed in-vivo image: global contrast
is still better than the original image, however the unealthy
zone is less evident.

Figure 6: FWRD processed in-vivo image: global contrast
is better than the original image and the unealthy zone can
be seen more clearly.
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5 Conclusions

To qualitatively evaluate the performance of the algo-
rithms, we considered a real ultrasound image. Fig. 4
shows a prostate affected by carcinoma. The noisy image
is acquired in-vivo. On this image we have applied both
the algorithms estimating the transducer pulse (see Fig. 3)
with an approach based on the modification of the homo-
morphic deconvolution described in [15].

WLSD (Fig. 5) seems not adequate to enhance the ul-
trasound image quality, because the large presence of noise
in images acquisition compromises deconvolution capabil-
ity. In contrast FWRD (Fig. 6) is a good tool to deblur
and denoise ultrasound images, and it allows for an ac-
curate identification of the ipoechogenic pathological tis-
sue on the left side of the prostatic gland. However, when
processing echo images, FWRD displays a greater compu-
tational cost than WLSD due to the image reconstruction
procedure adopted.

In fact, the use of one-dimensional algorithms on im-
ages needs preliminary segmentation followed by image
reconstruction. Each tissue responds to ultrasound with
different signal intensity, thus generating regions with dif-
ferent brightness in echo images. This feature is used by
Wavelet-based algorithms in order to operate images en-
hancement. Finally, visual quality provided by FWRD
could be used to identify biological tissues and separate
healthy and unhealthy regions for diagnostic purposes.
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