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Abstract - The research mainly aims to study the dynamical behaviour of the railroad cars motion when these 
last are moved by a wire, during the start and stop transients.  
In this first step the mathematical model and the equation of motion were defined; by means of  MatLab code 
the laws of motion were computed for both the cars and the winch, supposing that on this last acts a moment 
that increases (decreases) linearly with time during the start (stop) transients.  
The first computed results show that non negligible railroad cars oscillations occur during the start and stop 
transients, as it is observed in existing funicular railways. 
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1  Itroduction 
It is well known that in all those systems in which a 
mass is moved from an actuator through a non rigid 
link, the mass itself doesn’t move with the same 
law of motion of the actuator as relative motions 
between actuator and mass occur. In some case, due 
to dynamical effects, these relative motions can 
reach significant amplitudes. This occurs all the 
times in which the transmission between an 
actuator and the mechanical part that receives the 
motion can not be assumed as “rigid”; in this case  
the mass law of motion can be very different from 
the planned one. 
In particular, when a car is moved by a wire (e.g. 
funicular railways, cableways, elevators etc.), 
because of the elasticity of the wire the car itself 
will not move as the winch moves. What take place, 
instead, mainly during the start and stop transients, 
are the non negligible cars oscillations.  
These oscillations are obviously undesirable as they 
are uncomfortable for passengers and can give 
trouble to the transmission and to other mechanical 
parts (i.e. backlash, fatigue etc.) 
In order to reduce significantly the vibrations of 
non rigid mechanical system, several techniques 
have been proposed and developed (see e.g. [1-6]) ; 
in any case it is necessary to start from the 
knowledge of a suitable mathematical model of the 
system and its dynamical behaviour. 
For the reasons above, it seems to us interesting to 
start investigations on the dynamical behaviour of  
railroad cars moved by means of a steel wire.  
This would result in a first step to find adequate 
motor laws of motion for the motor to consent the 

reduction of the undesired railroad cars oscillations 
that occur during the start and stop transients. 
 
2   The mathematical model 
These initial investigations were conducted on a 
simple 3 d.o.f. damped model. The model is shown 
in fig.1 
 

 
Fig.1 – Scheme of the system 
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The motor moves a capstan C that by means of a  
transmission that is supposed “rigid”; consequently 
the capstan pulleys will move with the law of  
motion given by the motor (eventually linked 
through a gearbox). Both the railroad cars are 
moved by steel wires, having internal damping, 
whose coefficients of stiffness change, during the 
motion, as the wire length changes. The railroad 
cars are supposed to be rigid (as the stiffness is 
considered in the wire) and their mass is the car 
mass plus the passengers mass and one half of the 
wire mass; as the wire length changes during the 
motion, also the car mass is non constant. 
The friction between rails and wheels is considered 
as a constant force whose sign is opposite to the car 
speed sign; the aerodynamic friction has been 
assumed to be negligible. 
What reported above allows to obtain the following 
equation of motion.  
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The meaning and the values of the quantities in eq. 
(1) are reported in the appendix. 
In the equations above, the d’Alembert dynamics 
has been employed as, in our opinion, in this way 
each of the terms of the equations has more 
physical evidence. 
As in eq. (1) masses and stiffness coefficients are 
non constant, the equations are non constant 
coefficient derivative equations, hence the system 
own frequencies change with the car positions. 
In fig 2 are reported the eigenvalues of the system 
ω2 and ω3 (for the system considered in fig.1 it is 
always ω1 = 0), computed during the first 20 
seconds of the car run that will be considered. 
 

 
Fig. 2 – System eigenvalues 

 
It must be observed that, during the run, the wire 
length’s changes in percentage (hence the stiffness) 
is significant for the wire of car 2 while is 
negligible for that of car 1 ; thus one of the own 
frequency is quite constant while the other changes 
significantly.   
 
3   Computed results  
The equations of motion have been solved by 
means of MatLab code, by using the function 
ODE45 of the II order Runge Kutta algorithm with 
variable step of integration. The maximum absolute 
error (AbsToo) and the relative one (RelToo) didn’t 
exceed 10-4; for each step of the integration, the 
error e(i) for each of the components y(i) of the 
solution vector y satisfies the condition: 
 
|e(i)|<=max[RelTol*abs(y(i)),AbsTol(i)] 
 
As for the dynamical behaviour of the cars during 
the starting (and stop) transients, the computed 
results have been obtained considering an existing 
funicular railway; the data (i.e. masses, lengths, 
stiffness, damping etc.) are reported in the 
appendix. 
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3.1 – Start transient 
As for the start transient, it was supposed that on 
the winch acts a constant moment that grants the 
equilibrium of the cars and a variable moment that 
linearly increases from 0 Nm to 1.5·105 Nm within 
a time of 20 seconds as shown in fig 3. 
 

 
Fig.3 – Moment versus time 

 
In the figures 4a, 4b and 4c are reported the laws of 
motion (respectively: rotation, angular velocity and 
acceleration) of the winch. The solid lines refer to  
the damped system with non rigid wire and, for 
comparison are also reported the behaviours with 
non damped and non rigid wire (dashed lines) and, 
also, for comparison, the behaviour with rigid wire 
(dashed-dotted lines). 

 
Fig.4 – Winch law of motion, start 

 
In the figures 5a, 5b and 5c are reported the car 1 
laws of motion (respectively: displacement, 
velocity and acceleration) as it was made for the 
winch.   

 
Fig.5 – Car 1 law of motion, start 

 
In the figures 6a, 6b and 6c are reported car 2 laws 
of motion. 

 
Fig.6 – Car 2 law of motion, start 

 
From the figs above, it can be observed what 
follows: 
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- The cars laws of motion significantly differ from 
the planned ones, as oscillations with significant 
amplitude take place. In the scale adopted for the 
diagrams, this phenomenon is particularly evident if  
velocity and acceleration are considered. These can 
probably be non acceptable for the passengers. 
- The capstan laws of motion also much differ from 
the expected ones, as high amplitude accelerations 
occur. This phenomenon can cause undesirable 
effects on the gears and on the transmission 
between motor and capstan 
- The damping seems to have poor effects on both 
the cars and capstan behaviour. 

 
3.1 – Stop transient 
In order to compute the stop transient, it was 
considered that at t=0 both the cars move with the 
initial conditions (displacement and velocity) that 
were computed after the (20 seconds long) start 
transient;  with this initial conditions, a moment, 
opposite to the motion, and decreasing linearly 
from 105 Nm to 0 Nm within a time of 20 seconds, 
is applied to the winch. 
In fig.7 are reported the winch rotation, angular 
velocity and acceleration during the stop transient. 
The lines have the same meaning of those of the 
previous figures. 

 
Fig.7 – Winch law of motion, stop 

 
In fig.8 are reported car 1 displacement, velocity 
and acceleration. 

 
Fig.8 – Car 1 law of motion, stop 

 
In fig.9 are reported car 2 displacement, velocity 
and acceleration. 

 
Fig.9 – Car 2 law of motion, stop 

 
As it can be observed, from a qualitative point of 
view, the system behaviour during the stop 
transient doesn’t differ to a great extent from the 
one observed during the start transient.  
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As for the displacement it can be observed that, if 
the wire damping is considered, the differences 
from the undamped behaviour are somehow more 
evident than those observed during the stop 
transient. 
Also as far as the accelerations are concerned, it 
can be observed that the oscillations during the stop 
transient are higher than those during the start 
transients. This is in agreement wit what occurs in 
existing systems and suggests that the most 
important efforts for oscillation reduction must be 
done during the stop transients. 
 
Il all the considered cases (both during start and 
stop transient) it can be observed that the dynamical 
behaviour is essentially composed by two 
components: a low frequency component (which 
period is about 3.2 s)  and an higher frequency one 
whose period is about 0.16 s at the beginning of the 
transient and about 0,39 s at the end of the 
transient; this is particularly evident if the diagrams 
of the acceleration are considered. So: while the 
frequency of the first one is almost constant, the 
frequency of the second decreases when the time is 
increased.  
What above said is confirmed by a Fast Fourier 
Transform. In fig.10 is reported the FFT computed 
for the winch acceleration that is shown in Fig.4c. 
 

 
Fig.10 – FFT of the winch acceleration 

 
As it can be observed from the figure above, the 
FFT shows the presence of a frequency of about 0.3 
Hz (T≅3.2 s) and frequencies ranging from 2.5 Hz 
to 6.2 Hz (0.4≤T≤0.16 s). 
This aspect can be connected with the eigenvalues 
of the system that are reported in fig 2: as already 
observed, during the run (due to the changes of the 
wire length and stiffness) one of the own frequency 
of the system decreases while the other is about 
constant.   
 

4 Conclusions 
A first study on a non constant coefficient model of 
a mechanical system has been proposed. The main 
aim was to examine the dynamical behaviour of 
cable-railway systems, such as funicular railways, 
cableways, elevators etc.; this in order to 
investigate on the possibility to compute winch (or 
more generally: actuator) laws of motion that can 
reduce the car oscillations during the start and stop 
transients. 
These first results seem to agree, from a qualitative 
point of view with the behaviour that can be 
experimentally observed. Non negligible railroad 
cars oscillations occur during the start and stop 
transients; this can be unacceptable for the 
passengers comfort and can cause troubles to the 
system. To avoid this undesirable effects, it is 
useful to investigate on the possibility to compute a 
suitable law of the moment (versus time) that 
reduce these oscillations and accelerations.  
 

Appendix 
In Tab.1  the meaning and the amounts of the 
quantities in eq. (1) are reported. 
 

Table 1 
 

X1 Car 1 position m 
X2 Car 2 position m 
Θ winch position rad 
mC Car mass 20.000 kg 
m1P Car1 passeng. mass 20.000 kg 
m2P Car2 passeng. mass 10.000 kg 
m1f Car1 wire mass variable 
m2f Car2 wire mass variable 
mf Wire mass 5.052 kg 
ρ Wire density 7.800 kg/mc 
A Wire section 6.35*10-4  m2   
L10 Wire 1 lenght at t=0 1000 m 
L20 Wire 2 lenght at t=0 20 m 
E Wire elasticity 1,1*1011  N/m2  
α Rail inclination 70 ° 
R Winch radius 2 m 
f1C Friction coefficient 0.02 
f2C Friction coeff. 0.02 
σS1 Damping 

coefficient 
10 Ns/m 

σS2 Damping 
coefficient 

10 Ns/m 

I0 Winch mass 
moment of inertia 

400 kg m2 

g gravity 9,81 m/s2   
∆M Variable moment  
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