
Free and Fixed End-Point Optimal Control Problems for Linear 
Systems with Exogenous Variables 

 
CORNELIU BOTAN, FLORIN OSTAFI and ALEXANDRU ONEA 

Automatic Control and Industrial Informatics 
Technical University of Iasi 

Blvd. D. Mangeron 
ROMANIA 

 
 
 
Abstract:- A comparison between the fixed end free end-point optimal control problems is performed. The 
problems refer to a quadratic criterion and a linear system with exogenous variables. A symmetrical algorithm 
for both problems is presented. This algorithm can be easier implemented by comparison with classical 
procedures.  
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1   Introduction 
A perturbed linear multivariable time invariant 
system is considered. The system is described by 
the equation 
 

0
0x(t) Ax(t) Bu(t) n(t), x(t ) x= + + =&% %  (1) 

 
where nx(t)∈% �  is the state vector, mu(t)∈�  is 
the control vector, n(t) is the disturbance vector and 
A and B are matrices of appropriate dimensions. 
 If xd is the desired state vector, we can perform 
a translation and introduce the deviation of the state 
vector dx(t) = x(t) - x%  and the system equation 
becomes 
 
x(t) = Ax(t) + Bu(t) + w(t)& ,               (2) 
 
where   w(t) = Axd + n(t)               (3) 
 
is the vector of the exogenous variables (n(t) and 
xd). 
 We shall formulate the following optimal 
control problems referring to the system (1): 
 P1. Find the optimal feedback control u(x(t)), 
which transfers the system (2) from the initial state 

0
0x(t ) x=  in the imposed final state fx(t ) 0=  and 

minimizes the criterion 
 

f

0

t
T T

1 1 1
t

1J [x (t)Q x(t) u (t)P u(t)]dt
2

= +∫  (4) 

 
(T denotes the transposition). 

 P2. Find the optimal feedback control u(x(t)), 
which transfers the system (2) from the initial state 

0
0x(t ) x=  in the free final state fx(t )  and 

minimizes the criterion  
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1J x(t ) Sx(t )
2

1 x (t)Q (t)x(t) u (t)P (t)u(t ) dt
2

= +

⎡+ +∫ ⎣

 (5) 

 
 P1 is a fixed end-point optimal control problem 
and P2 is a free end-point one. 
 The choice of the criterion (4) or (5) depends on 
the concrete application. For instance, in the 
motion control systems it is imposed to obtain the 
desired state xd at the final moment tf. But the 
problem P2 leads to a smaller control effort and it 
is preferable if the final condition 
 
 x(tf) = 0                  (6) 
 
is not obligatory. 
 The solutions for the above formulated 
problems are well known [1], [2], [3] but there are 
some difficulties in implementation of the 
algorithms. The solution to the problem P1 is 
usually presented as an open loop control u(t). The 
feedback control u(x(t)) has a complicated form 
and implies to compute the inverse of a time 
variant matrix. The problem P2 is the most 
frequently problem known as a linear quadratic 
(LQ) optimal control problem with finite final time; 
the matrix of the feedback controller is time-variant 
and is designed based on a solution to a Riccati 
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matriceal differential equation. This solution has to 
be computed in real time and this fact can generate 
some difficulties in implementation, augmented by 
the fact that the Riccati equation must be solved in 
inverse time, starting from a final condition. 
 This paper is based on some previous results of 
the authors [4], [5], [6], [7] and presents a simpler 
for implementation solution to the formulated 
problems. Moreover, a symmetrical approach for 
both problems is established. Also, a comparison 
between these problems is presented. 
 
 
2   Usual approaches 
We shall consider the same weight matrices in the 
above criteria ( 1 2Q Q Q= =  and 1 2P P P= = ), for a 
more relevant comparison. 
 Based on the Hamilton necessary conditions, the 
optimal control is obtained as 
 

1 Tu(t) P B (t)−= − λ  (7) 
 
where n(t)λ ∈�  is the co-state vector and satisfies 
the equation 
 

T(t) Qx(t) A (t)λ = − − λ&  (8) 
 
One obtain from (2), (7) and (8) 
 
x(t) Ax(t) N (t) w(t)= − λ +&  (9) 

T(t) Qx(t) A (t)λ = − − λ&   
 
where 1 TN BP B−= .  
 
The difference between the problem P1 and P2 
refers to the terminal conditions: 
- for the problem P1: 0x(t )  and fx(t ) 0= are 
imposed ( 0(t )λ and f(t )λ  are free); 
- for the problem P2: 0x(t ) and 

f f(t ) Sx(t )λ =  (10) 
are imposed ( fx(t )  and 0(t )λ  are free) 
 
The system (9) can be written as 
 

(t) G (t) (t)γ = γ + µ& , (11) 
 
where 
 

2nx(t)
(t)

(t)
⎡ ⎤

γ = ∈⎢ ⎥λ⎣ ⎦
� , 2nx2n

T

A N
G

Q A
−⎡ ⎤

= ∈⎢ ⎥− −⎣ ⎦
� ,

w
0
⎡ ⎤

µ=⎢ ⎥
⎣ ⎦

. (12) 

The solution to the equation (11) is 
 

0 0 0(t) (t, t ) (t ) (t, t )γ = Γ γ + α , (13) 
 
where 
 

11 0 12 0 2nx2n
0

21 0 22 0

nxn
ij 0

(t, t ) (t, t )
(t, t )

(t, t ) (t, t )

(t, t ) i, j 1,2

Γ Γ⎡ ⎤
Γ = ∈⎢ ⎥Γ Γ⎣ ⎦
Γ ∈ =

�

�

 (14) 

 
is the transition matrix for G, and  
 

  0

0

t

11t1 0
0 t

2 0
21t

(t, )w( )(t, t )
α(t, t ) =

(t, t ) (t, )w( )

⎡ ⎤Γ τ τα⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥α⎣ ⎦ Γ τ τ⎢ ⎥⎣ ⎦

∫

∫
 (15) 

 
is the component depending on the exogenous 
variables. We can explicit the solution (13) for t = tf  
 

0 0
f f 0 2 f 0 1 f 0

0 0
f 2 f 0 22 f 0 2 f 0

x(t ) (t , t )x (t , t ) (t , t )

(t ) (t , t )x (t , t ) (t , t )
11 1

1

= Γ + Γ λ + α

λ = Γ + Γ λ + α
 (16) 

0
0(t )λ = λ . 

 
Using (6) (for the P1 problem), from (16) yields 
 

0 0 1
1 12 f 0 1 f 0L x (t , t ) (t , t )−λ = − Γ α , (17) 

 
where 
 

1
1 12 f 0 12 f 0L (t , t ) (t , t )−= −Γ Γ  (18) 

 
The matrix 12Γ  is nonsingular if the system (2) is 
completely controllable [6]. 
 
Now, the vector 

TT T
0 0 0(t ) x(t ) (t )⎡ ⎤γ = λ⎣ ⎦ is 

known and we can compute x(t) and λ(t) from (13) 
and then, we can express the optimal open loop 
control u(t) from (5). 
 Using the previous relations, and replacing x0 in 
terms of x(t), one can obtain also the expression for 
the feedback control u(x(t)), but the formula is 
complicated and implies to compute in real time the 
inverse of a time variant matrix. 
 Similarly, using (10) and (16) we can express λ0 
in terms of x0 for the problem P2, but the solution  
is find in this case on the other way, namely, 
imposing (t) R(t)x(t)λ = % , where R(t)%  is obtained 
as a solution to a Riccati differential matriceal 
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equation. The difficulties which arise in this case 
were mentioned above. 
 
 
3   Main results 
A significant simplification is obtained if we 
perform a change of variables: 
 

(t) T (t)γ = ρ  (19) 
 
with 
 

n

n

I 0
T

R I
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

   and  n1

n

I 0
T

R I
− ⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 (20) 

 
where In is the nxn identity matrix and R is a 
symmetrical nxn matrix. 
According to (20), the new vector is 
 

x(t) x(t)
(t)

v(t) (t) Rx(t)
⎡ ⎤ ⎡ ⎤

ρ = =⎢ ⎥ ⎢ ⎥λ −⎣ ⎦ ⎣ ⎦
 (21) 

 
and the corresponding differential equation is  
 

1(t) H (t) T (t)−ρ = ρ + µ& ,  (22) 
 
with 
 

1H T GT−=  (23) 
 
From (12) and (20) we obtain 
 

T T

A NR N
H

RNR RA A R Q A RN
− −⎡ ⎤

= ⎢ ⎥− − − − +⎣ ⎦
 (24) 

 
If we choose R so that 
 

TRNR RA A R Q 0− − − =  (25) 
 
and denote 
 
F A NR= − , (26) 
 
the matrix H becomes 
 

T

F N
H

0 F
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
 (27) 

 
Note that (25) is the Riccati matriceal algebraic 
equation which appears in the LQ problem with 
infinite final time. 

 Let be c(t, t )Ω the transition matrix for H. Based 
on the fact that  c c(t, t ) H (t, t )Ω = Ω& , one obtain [4] 
 

c 12 c
c

c

(t, t ) (t, t )
(t, t )

0 (t, t )
Ψ Ω⎡ ⎤

Ω = ⎢ ⎥φ⎣ ⎦
 (28) 

 
where (.)Ψ and (.)φ are the transition matrices for 
F and –FT , respectively, where tc denotes the 
terminal time (t0 or tf) and 
 

ct

12 c c
t

(t, t ) (t, )N ( , t )dΩ = Ψ τ φ τ τ∫  (29) 

 
The solution to the equation (22) is 
 

c c c(t) (t, t ) (t ) (t, t )ρ =Ω ρ +β ,                                (30) 
   
where 
 

c

c

t
12t1 c

c t
1 c t

[ (t, ) (t, )R]w( )d(t,t )
(t,t )

(t,t ) (t, )Rw( )d

⎡ ⎤Ψ τ −Ω τ τ τ∫β⎡ ⎤ ⎢ ⎥β = =⎢ ⎥β ⎢ ⎥−Φ τ τ τ⎣ ⎦ ∫⎣ ⎦
’ (31) 

                  
is the component depending on the exogenous 
variables. The solution (30) can be expressed as 
 

c c 12 c c 1 cx(t) (t, t )x(t ) (t, t )v(t ) (t, t )= Ψ +Ω +β  (32) 

c c 2 cv(t) (t, t )v(t ) (t, t )=Φ +β  (33) 
 
 For the problem P1, for c 0t t= , one obtain 
from (17) and (21) 
 

0 0 0 1
0 1 12 f 0 1 f 0v(t ) Rx (L R)x (t ,t ) (t ,t )−=λ − = − −Γ α  (34)

   
with L1 given by (18). 
Thus, the solution for v(t) can be expressed from 
(33) in terms of x0 and of exogenous vector 
 
 0 0 2 0v(t) (t, t )v(t ) (t, t )=Φ +β ,  (35) 
 
with v(t0) given by (34) and β2(t,t0) given by (31). 
The last term in (34) can be easier computed if we 
express the transition matrix Γ(.) in terms of the 
transition matrix Ω(.). For this purpose, one obtain 
from (23) 
 
  Γ(.) = TΩ(.)T 

-1                                                 (36)  
 
and therefore, using (20) and (28), it results 
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  Γ11(.) = Ψ(.) - Ω12(.)R   and   Γ12(.) =  Ω12(.).   (37) 
                                                     
For the P2 problem we use the final condition 
(10) and from (21) for t = tf, it results 
 

f fv(t ) (S R)x(t )= − . (38) 
 
We obtain from (32) for t = t0 and tc = tf and from 
(38) 
 

0
f 1 0 fx Mx(t ) (t , t )= +β , (39) 

 
where 
 

0 f 12 0 fM (t , t ) (t , t )(S R)= Ψ +Ω − . (40) 
 
Now, we can write from (38) and (39) 
 

1 0
f 1 0 fv(t ) (S R)M [x (t , t )]−= − −β  (41) 

 
(one can prove that M is a nonsingular matrix). 
Using (33) for t = t0 and tc = tf  and (39), we obtain 
 

0
0 1 0 f 2 0 fv(t ) V[x (t , t )] (t , t )= −β + β  (42) 

 
with 

1
0 fV (t , t )(S R)M−= Φ −  (43) 

 
and the vector v(t) is given by the same expression 
(35) as for the P1 problem, but now v(t0) is 
computed with (42). 
 
For both problems, the optimal control vector can 
be computed from (7) and (21) in the form 
 

f su(t) u (t) u (t)= +  (45) 
 
where 
 

1 T
fu (t) P B Rx(t)−= −  (46) 

 
is the feedback component and  
 

1 T
su (t) P B v(t)−= −  (47) 

 
is a supplementary component, depending on the 
vector v(t), given by (35). 
  
 Remark 1: The optimal control u(t) contains 
only the feedback component uf(t) for the problem 
LQ problem with infinite final time. In the cases of 
the P1 and P2 problems appears a supplementary 

component us(t) given by (35). This component 
depends on the initial state x0 and on the exogenous 
variables xd and n(t). The difference between the 
problems P1 and P2 consists in the formulae for 
the initial value v(t0) of the vector v(t) ((34) for P1 
and (42) for P2). 
 Remark 2: The computation of optimal control 
u(t) implies the knowledge of the vectors β1(t0,tf) 
and  β2(t0,tf). This supposes that the exogenous 
variables are beforehand known on the 
optimization interval [t0,tf] and this implies to know 
the value of the disturbance n(t) on this interval. 
Only the knowledge of the shape of n(t) is 
sufficient (for instance n(t)=constant) if the 
disturbance torque is measured or estimated at the 
initial moment. A disturbance observer can be 
introduced in the controller structure on this 
purpose.  
 Remark 3: The above formulae are quite 
complicated, but the most part of the computing is 
performed off-line, in the design stage of the 
controller. The real-time computing implies only 
the computing of the optimal control u(t) and this 
imposes to establish a usual feedback component 
uf(t) and a supplementary component us(t). This last 
component contains in the both cases only two time 
variant elements – the matrix 0(t, t )Φ and the 
vector β2(t,tf). These variant elements can be 
recurrently computed and thus, the supplementary 
component can be easy computed and the global 
computing effort for u(t) is not too complicated by 
comparison with the case of the usual state 
feedback control. 
 Remark 4: The optimal control is ensured for 
the both problems on the interval [t0,tf]. In many 
cases it is desired to maintain the desired values of 
the variables for t > tf. It is necessary in this case to 
change the control law, for instance to introduce a 
usual linear feedback control.  
 
 
4   Simulation results 
Some simulation tests were performed for both 
problems P1 and P2. The Fig.1 and 2 show the 
behaviour of the optimal system in the case of the 
LQ problem with fixed end-point and in the case of 
the LQ problem with free end-point, respectively. 
The presented results are for the following data (the 
same as in [7], which refers to similar problems but 
without exogenous variables). 

0 0.1 0 0 0
A 0 0 20 , B 0 , n 28

0 3.5 19.4 6.25 0

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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 (the adopted matrices correspond for instance to a 
positioning system). 

3 0 0 60 0 0
Q 0 0 0 , S 0 1 0

0 0 3.1 0 0 0

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

P = p = 1, t0 = 0s, tf = 1s  . 
 

 
Fig. 1 

 
Fig. 2 

 
 One can remark a good behaviour of the optimal 
system in both cases and that x(tf)=0 can be 
achieved only for the P1 problem, but   the control 
variable u(t) is bigger in this case, especially in the 
initial and final period. This result is expected 
because the system is forced in this case to reach 
the imposed final state fx(t ) 0= . 
 The effect of an imprecise estimation is 
presented in the Fig. 3 and 4 for the two problems 
(an error of 35% is supposed). One can remark that 
especially the final values of the state variables are 
affected. 
 Finally, the Fig. 5 and 6 show the system 
behaviour for the two problem if the control law is 
changed for t > tf, as it is indicated in the Remark 4. 
The modified control law was chosen so that only 
the final values for the variables x1 and x2 to be 
zero.  

  
Fig. 3 

 
Fig.4 

 
Fig.5 

 
Fig. 6 
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5   Conclusions 
- A comparison between LQ optimal problem 
with fixed end-point and free end-point is 
performed. The effect of the exogenous variables 
(desired state vector and disturbance) is studied. 
- The algorithms indicated in the paper for the 
both problems have advantages by comparison with 
classical procedures and lead to a significant 
decrease of the computing time. 
- Unlike the usual approaches, which are different 
for the both problems, the proposed method leads 
to a similar solution for the both problems: the 
optimal control contains similar feedback and 
supplementary components; the difference is 
between the last components, which involve 
different initial values for a vector. 
- The supplementary component contains two 
terms in both cases: one depending on the initial 
state and one depending on the exogenous 
variables.  
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