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Abstract: The ANN methodology, inspired by neurobiology theories of massive interconnection and 
parallelism has been successfully employed in variety of optimization problems. In ground water 
management models, either governing equations are embedded into the management model or unit 
response matrixes are employed .Unit response matrixes development requires huge amount of data 
and/or simulation runs. In this paper , ANN is employed to develop unit response matrix coefficients 
to be later used in the management model .To do it , a ANN model has been trained to predict the 
outcome of the flow code , which results in unit response matrix coefficients for the aquifer under 
consideration. To train the ANN model different realizations from pumping well co-ordinates, 
distance between pumping and observation wells, and hydraulic conductivities of pumping wells were 
used, it was concluded that pumping well co-ordinates may be successfully employed for developing 
unit response matrix coefficients to be later used in management models .To test the performance of 
the proposed approach, the hypothetical aquifer was assumed. The aquifer response to different 
pumping stresses were compared using a well-defined simulation model and those resulted from unit 
response matrixes developed by (1) ANN approach and (2) direct data from groundwater simulation 
runs. It was concluded that ANN may be successfully employed for development of unit response 
matrix with limited data from field study or ground water simulation runs.  
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1 Introduction 
Using mathematical models for simulation and 
optimization of groundwater systems, has received 
increasing attention in recent two decades. Since the 
governing equation of flow in porous media is a 
partial differential equation (i.e. Bossinesque eq.), it 
cannot be directly included in any management 
optimization model. Therefore, one of the following 
two methods is usually employed: 1-Embedding 

method (EM), and 2-Unit response matrix method 
(URM) [3]. 

In EM differential equations, describing the 
flow in porous media is converted into a set of 
instantaneous algebraic equations, via numerical 
methods such as finite differences of finite elements. 
Then these equations are directly embedded into the 
optimization model in the form of model 
constraints. The resulted schemes often are very 
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large and nonlinear and solution of them is very 
difficult. On the other hand in URM method the 
aquifer's response to any excitation will be 
estimated and generalized for the whole aquifer. To 
do it the aquifer may be simulated with a distributed 
parameter model, such as MODFLOW [8], then unit 
response coefficients (URCs) of aquifer are 
generated by running the model repeatedly. 

Assuming linear behavior for aquifer, and the 
principle of superposition, the water table 
fluctuations may be estimated employing the 
developed excitation-response equation. Since these 
equations are linear the management model may be 
formulated as a linear programming (LP), provided 
objective function and other constraints are linear. 
The resulted model may then be solved by any 
standard package of LP solvers. 

The assumption of linear relation between 
excitation (pumping, recharging) and aquifer 
response (drawdown or rise of water table) is quite 
valid for confined aquifers, and it must be verified 
for other types of aquifers. However if the 
drawdowns (rises) compared to the thickness of the 
saturated zone is small, the method is applicable 
with fair accuracy [1]. 

The simplicity of the URM method is the 
main reason for its extensive use in groundwater 
management models, compared to the EM. However 
generating the URCs is a very time consuming 
procedure. After calibrating the simulation model, 
one must run it repeatedly to develop URCs. In 
practical applications, the number of excitations 
needed for URCs development is much more than 
the number of source or sink terms. 

Artificial Neural Networks (ANNs) present a 
tool by which URCs may be developed in a 
relatively shorter time period. In this paper the 
capabilities of ANNs for generating URCs are 

presented. After description of the method, the 
URCs of a hypothetical aquifer are generated via 
ANN approach and the results are compared with 
those obtained from repeatedly running the 
simulation model, and those of a multivariate 
regression model. 

 
 

2 Unit Response Matrix Method 
The URM method was initially developed for 

oil used in oil fields [6]. Later it was employed in 
groundwater modeling and management too. The 
Bossinesque of a two dimensional flow in a 
heterogeneous anisotropic aquifer has the following 
form:    
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In which: 
Tx and Ty: Transmissivity of aquifer in x and 

y directions respectively, 
h: water table elevation, 
S: Storativity of aquifer, 
W: Sink and sources term, 
x, y: spatial coordinates, 
t: time coordinate, 
Considering similarity between flow in 

porous media and that of heat transfer in a solid 
body, the following relation between pumping rate 
and drawdown in water table may be obtained [10], 
[4]:   
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In which: 
s(k,n): drawdown in well k at the end of time 

period n, 
   β(k,j,n-t+1)  : unit response coefficient, that 

is the (unit) drawdown in well k at the end of time 
period n due to unit pumping at well j (j may equal 
k) during time period t. 
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q(j,t): pumping rate at well j during time 
period t  

J: total number of pumping cells. 
Maddock [7] developed this method for 

obtaining the optimum discharge of an aquifer 
system with three wells. He applied the term 
"Algebraic technological functions" for URCs. 
Morel-Seytoux [10] employed the same concept for 
stream-aquifer systems using "Discrete Kernels" 
term for URCs. Heidari [4], Yazicigil [14], and 
Reichard [11] used URCs in LP management 
models to define the optimum management 
strategies of aquifers. Barlow et al. [1], and Miller et 
al. [9], are among other researchers who employed 
the URCs to investigate the interaction of surface 
and groundwater bodies in large-scale basins. 

 
 

3 Artificial Neural Networks 
ANNs as a computational method, was originally 
presented by Rosenblatt as Perceptron nets and 
Widrow as ADALINE nets. The method is based on 
the complicated theory of parallel process of 
biologic neuron systems. The basic elements of an 
ANN are the artificial neurons which may be 
referred as nodes, units or processing elements. 
Figure 1 presents the main elements of a biological 
neuron and corresponding elements in an ANN. 

The input pattern to a node is similar to a 
dendrite of a biological cell, which can be presented 
by a vector with N elements. X=(x1, x2, … xN) Now 
the scalar quantity S may be defined as: 
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In which, W= (w1, w2… wN), is vector of weights. 
The scalar S then enters to a nonlinear transition 
function f, to yield output y, as  
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Fig. 1- Neural networks: a) structure of a biologic 
neuron, b)structure of an artificial neural network 

 
The function f often takes the form of sigmoid or 
hyperbolic tangent, that the former is more 
common. The sigmoid function is defined by the 
following relation,  

1))exp(1()( −−+= sSf  (5) 
The output y either can be the model result or 

be treated as an input to the next layer in multi-layer 
networks. Figure 2 shows a general neural network 
structure. As it has seen, each net has formed of an 
input layer, one or more hidden layer, and one 
output layer. There are many algorithms that were 
developed for computing optimum weights, among 
them the back propagation algorithm has been used 
extensively. In this algorithm, at first, nodes give 
small weights randomly. Then in a repetitive 
procedure, these weights are improved based on 
comparison between observed and computed 
outputs. 

Most of the ANN-based studies in the field of 
water resources deal with rainfall-runoff modeling 
with limited number being in the field of 
groundwater systems.  
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Fig. 2- General structure of an ANN 

 
Rizzo and Dougherty [12], combining ANNs 

and Kriging develop Neural-kriging method for 
estimating spatial distribution of hydrodynamic 
properties of aquifers. Rogers and Dowla [13] used 
an ANN combined with a solute transport model and 
Genetic Algorithms for computing optimum 
remediation strategy of a polluted aquifer. Johnson 
and Rogers [5] in a similar work used ANNs with 
Solute transport model and Simulated Annealing for 
an aquifer optimum remediation. Coulibaly et al. 
[2], Employed different ANNs, for simulation of 
water table fluctuation in Burkina Faso. This paper 
presents an ANN based method to estimate unit 
response coefficient of an aquifer with limited data, 
comparing the capability of the proposed algorithm 
with design of an ANN system calls for 
determination of input parameters, the extent of 
training data, structures of ANN system, transition 
function and training algorithm, as well as network 
selection criteria. 

 
 
 

4 Designing and Training of ANNs 
Determination of input parameters requires some 
knowledge about nature of the problem under 
consideration. For example in aquifer drawdown 
problem, the drawdown in each point could be a 
function of distance from pumping well (d), 

pumping rate (Q), boundary condition and aquifer 
properties (k or T and S).It is worth to note that 
however the drawdown in a certain aquifer, 
ultimately is a two dimensional function of the 
position of the point of interest from the position of 
the pumping well (s). 
From several transition functions, sigmoid function 
has been used extensively in various fields in 
engineering and has been used in this study. For 
training algorithm the back propagation or delta rule 
scheme has proved to be efficient in various 
problems. The same scheme has been employed in 
this study as training algorithm. 
To select an appropriate network, root of mean 
square error (RMSE), and correlation coefficient of 
training and testing has been employed in this 
investigation. Training algorithm the back 
propagation or delta rule scheme has proved to be 
efficient in various problems. The same scheme has 
been employed in this study as training algorithm. 
To select an appropriate network, root of mean 
square error (RMSE), and correlation coefficient of 
training and testing has been employed in this 
investigation. 
 
 

5 Work Example 
To illustrate the performance of the proposed ANN 
scheme, a hypothetical aquifer is considered (Fig.3). 
The aquifer is 1800m×1800m long in dimension, 
which has been discretized in 324 (100m×100m) 
meshes. East and the west of the aquifer are 
bounded by no flow boundaries, and north and south 
of it has constant head boundary. The aquifer is 
completely heterogeneous in hydraulic conductivity 
and the storativity of it, is assumed to be 0.2. The 
bedrock depth is 100 m and the initial water table is 
90m for all cells. The purpose of the example is to 
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develop URCs for the observation well (cell) 
located at the central cell for unit pumping rate in 
pumping wells (cells) as shown in figure 4.  
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

Constant head No-flow boundary

K=.0002 K=.0003 K=.0004

K=.0005 K=.0006 K=.0007
 

Fig. 3-Hypothetical aquifer and boundary conditions 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 1 18 34 51 67 83 95

2 7 23 40 57 72 89

3 12 2 29 45 62 78

4 2 19 24 35 52 68 84

5 58 5 73 90

6 13 30 41 53 79 7 96

7 3 8 25 63

8 20 36 4 46 59 69 74 85 91

9 1 14 3 54 80 97

10 31 42 47

11 9 26 37 60 64 70 75 92

12 4 15 21 48 55 81 86 98

13 32 43 6

14 10 27 38 76 93

15 5 16 49 65 87 99

16 11 33 44 56 61 71

17 17 28 77 88 94 8

18 6 22 39 50 66 82 100

36 Learning cell 5 Testing cell Observation cell
 

Figure 4-Location of different cells in aquifer 
  
 With a constant pumping rate of 1000, the 

test was carried out for a 10 days observation 
period. Different combination of input parameters 
was considered, among which the following 4 
schemes were reelected for presenting the results: 
ANN1, with only one input node: d; 
ANN2, with two input nodes: d and k; 
ANN3, with two input nodes: x and y; 
ANN4, with four input nodes: d,k,x,y; 

In with, d =the distance between pumping and 
observation cells; k =the pumping cell hydraulic 

conductivity; and x,y = the coordinates of pumping 
cell related to the origin. The required data 
(response of observation cell to pumping in training 
and testing cells) were generated with applying the 
well-known MODFLOW package [8]. Several 
combinations of hidden layers and the number of 
nodes in each layer have been tested. Among them 
the best one was a network with 2 hidden layers 
each with 10 nodes. Figures 5-8 show the result of 
training and testing data for 4 different networks as 
defined earlier. 
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Fig. 5- Correlation between observed and predicted 

drawdowns in training and testing of ANN1 
 
With only 1 input node (d), the ANN1 

estimates the response in a moderate level of 
accuracy (Fig.5). However, for planning purposes 
the errors are high. On the other hand, adding the 
hydraulic conductivity of the pumping cells as an 
input data has insignificant effect on outputs (Figs. 6 
and 8). It was concluded that, the third model 
performs better than the other models (Fig.7). In 
fact, by selecting x, y of pumping cells as input 
parameters the spatial properties of aquifer, as well 
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as the effects of boundary conditions will be 
considered. 
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Fig. 6- Correlation between observed and predicted 

drawdowns in training and testing of ANN2 
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Fig. 7- Correlation between observed and predicted 

drawdowns in training and testing of ANN3 
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Fig. 8- Correlation between observed and predicted 

drawdowns in training and testing of ANN4 
 
For the purpose of assessing the effect of the 

number of training wells, three alternative sets of 
training data were considered for the selected as: 
ANN5, with 50 training cells, 
ANN6, with 25 training cells, and 
ANN7, with 13 training cells. 
Location of training cells were selected randomly, 
while testing cells remaining the same. Performance 
of the model is highly dependent on the relative 
position of the training and testing cells. The best 
results may be expected when the testing cells are 
surrounded by the training cells. For the scheme 
presented in Figures 9 to 11 results for different 
models are presented in table 1. As of table 1, 78% 
reduction in the number of training cells (i.e. 
reducing 50 to 13), increases the training error by 
less than 2%. However, this result may only be valid 
for this specific problem and may not be generalized 
for other problem settings. 

 

Proceedings of the 5th WSEAS/IASME Int. Conf. on SYSTEMS THEORY and SCIENTIFIC COMPUTATION, Malta, September 15-17, 2005 (pp17-25)



 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 1 26 34 42 48

2 4 12 29 45

3 2 15 23

4 10 18

5 5 37

6 7 21 27 40 7

7 2 13 32

8 4 30 35 43 46

9 1 3 49

10 16 24

11 5 19 38

12 8 11 28 41

13 22 6

14 14 47

15 3 25 33 44 50

16 6 17 31 36

17 9 39 8

18 20

6 Learning cell 4 Testing cell Observation cell  
Fig. 9-Location of different cells in ANN5 
 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 1
2 15 23
3 2 8 12
4
5 5 19
6 4 11 14 7
7 7
8 4 18 22
9 1 3 25

10

11 3 10
12 6 21
13 6
14 24
15 2 13 17
16 9 16
17 5 20 8
18

6 Learning cell 4 Testing cell Observation cell  
Fig. 10-Location of different cells in ANN6 

  
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 1
2 8 12
3 2
4
5 5 10
6 6 7
7 4

8 4
9 1 3 13

10
11 2
12 11
13 6
14
15 7 9
16 5
17 3 8
18

6 Learning cell 4 Testing cell Observation cell  
Fig. 11-Location of different cells in ANN7 

 
Table 1-Results of  Networks in training and testing 

Learning Testing

11.1

0.991
7.3
9.5

8
ANN3 0.991

8 0.944
17.7
7.8 8

8

50
25
13

0.924

0.993
0.988

100
100
100

0.951

8.1
7.0

8
8

ANN4

No. of
R2

100

22.8ANN1
ANN2

No. ofNetwork
Name

0.962 8.2
5.2

0.990 5.8

0.987 5.6

Mean 
Error(%)cells R2 Mean 

cells Error(%)

7.50.965
ANN6
ANN7

ANN5
0.981
0.990 0.980 7.0

8

 
 

 

6 Comparison of Different Method of 
URM Generation 
Based on the previous results, the URCs for the 
problem under consideration were generated and 
compared with two other common methods. To 
illustrate the capabilities of the proposed ANN 
model, a total of 32 cells were selected from which 
16 were employed for training and the other 16 for 
testing process (Fig. 12). To be able to assess 
performance of the model, the exact drawdowns in 
observation cell for a ten day period, was 
determined employing MODFLOW. 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 1 8 14
2 4
3 1 9 14
4
5 4 6 12
6 16
7 7
8 2 11 11
9 2 15
10 6 9 15
11 3 10
12 7 12
13
14 5 8 13
15 5
16 13
17
18 3 10 16

6 Learning cell 7 Testing cell Observation cell  
Figure 9-Location of cells for generating URCs 

 
   Except ANN method we use two other 

methods for generating URCs. The first one is the 
use of MODFLOW repeatedly (common method) 
and the second one is the based on a multivariate 
regression model. We use the same input data is 
regression model as we use for ANN. The general 
form of regression equation is: 

ytaxtatats ).().()()( 210 ++=  (6) 
 In which s(t) is unit drawdown in observation 

cell at the end of day t. a0, a1, and a2  are constant, 
and x,y are pumping (testing) cells coordinates. 

After generation of URCs based on different 
method the drawdown in observation cell at the end 
of each day of ten days period have been computed 
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based on equation 2. The results summarize in table 
2. As seen in this table, the result of ANN and 
MODFLOW is very close to exact drawdown. For 
better comparing, the result of 3 methods with exact 
values is illustrated in figure 17. It is clear that the 
ANN model could be generating URCs, with the 
same accurate of using MODFLOW model 
repeatedly. 
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Fig. 10-Exact and predicted drawdowns with 

different models in observation cell 
 

Table 2- Exact and predicted drawdown in different 
models and associated errors in observation cell 

exact modflow regress ANN modflow regress ANN
1 0.97 0.97 0.92 0.99 0.03 4.90 1.73
2 2.00 2.00 1.70 2.02 0.07 14.81 1.03
3 2.91 2.90 2.37 2.92 0.30 18.67 0.34
4 3.71 3.69 2.95 3.71 0.49 20.51 0.07
5 4.40 4.37 3.45 4.39 0.70 21.53 0.31
6 5.01 4.96 3.90 4.97 0.91 22.19 0.72
7 5.54 5.48 4.28 5.49 1.12 22.63 0.94
8 6.01 5.93 4.62 5.93 1.33 22.99 1.32
9 6.42 6.32 4.92 6.32 1.54 23.29 1.54

10 6.78 6.66 5.18 6.65 1.73 23.54 1.86
mean 0.82 19.51 0.98

drowdown(m) error(%)day

  
On the other hand since the location of testing 

cells was considered randomly, we could generate 
the URCs for more cells of the aquifer than 
generated here.  

 
 
 

7 Summary and Conclusions 
In this paper, the capability of ANNs in generating 
URCs was evaluated. The results show that with 

ANN one can generate URCs with a high level of 
accuracy. Comparison of the results with generated 
by using MODFLOW repeatedly and those of using 
multivariate regression, leads to the following major 
conclusions:  

1-Based on x and y (coordinates) of training 
cells, one may develop an ANN model to generate 
URCs with acceptable accuracy. 

2-With a relatively few number of training 
data points (cells); it is possible to generate the 
URCs for a relatively high number of cells. 

3-For the case on there consideration, the 
URCs developed by the ANN model is as accurate 
as the results of simulation model with less 
execution time. 

4-The trained ANN model may be utilized in 
the same aquifer, for different combination of 
testing cells. 

5-The performance of multivariate regression 
model for generating URCs is weak, compared to 
the other two methods. 
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