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Abstract: Proteomic analysis is done primarily by the use of the two-dimensional electrophoreses (2-DE)
technigue coupled with the Mass Spectrometry (MS) analysis. The first technique helped by the proteomic
imaging leads to the localization of the candidates proteins for mass spectrometry analysis. The comparison
between the spectra of masses obtained and those theoretical of DataBase leads to the identification of proteins
of interest in term of peptides or amino acids. The presence of parasitic and/or the absence of useful mass peaks
distort(s) the result of the identification process. In this article, we propose an original data reduction algorithm
with the aim of removing the spectra baseline, then removing parasitic mass peaks and amplifying those
useful. The algorithm principle uses the dyadic muli-resolution technique (bio-orthogonal
decomposition/reconstruction) coupled to the fuzzy logic thresholding. In order to evaluate the quality of this
algorithm, we present a comparison of the results obtained by our algorithm and those obtained using the data

reduction software of MALDI-TOF spectrometer (Matrix-Assisted Laser Desorption/ionization).
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1 Introduction

The proteomic [6,10] is a field which makes it
possible to connect the sequence of the genome and
the cellular behavior. The proteomic analysis can
be done in various stages: preparation of the
samples, separation of proteins, analysis by mass
spectrometry, preprocessing (data mining) and
interrogation of the data banks. The mass
spectrometry measures the mass of peptides
(typically obtained by tryptic digestion) [10]. These
masses are then compared to those theoretical in
Databases in order to identify the protein name.
Electronic and chemical noise are often the source
of bad identification [6].

In this document, we propose an objective data
reduction algorithm of mass spectra based on the
multi-resolution technique [2,6,7,9] and the fuzzy
set theory [3,4,11,12,13]. The idea is to separate the
mass peaks into groups of dyadic sub-bands and
then thresholding the high frequencies sub-band.
This is by minimizing the fuzzy Shannon entropy.
The result is then amplified in an adaptive way. At
the end of the process, the mass spectra is
reconstructed and corrected by removing the
baseline signal[1].

2 Problem Formulation

The currently most common method to identify
proteins is to first enzymatically digest the proteins,
then determine the masses of result peptides by peak

detection on a MALDI-TOF spectrum [14], and
finaly use the peptide mass fingerprints to reseach
protein sequences. The found theoretical protein is
that which gives a maximum rate of covering. It is
clear that this result depends mainly on the quality
of the mass spectrum. Consequently the data
reduction processing is a primodial stage since the
presence of (electronic and/or chemical) parasitic,
or the absence of useful mass peaks distorts the
result of the protein identification. As sometimes,
only a few experimental peptide masses in the
fingerprint match the theoretical masses in a
databases, failure to detect one peak can hinder the
correct identification of a protein. The standard data
reduction  software  (DataExplorer  Voyager)
provided with MALDI spectrometer, is often
unoptimal and nonadaptive, it consists of doing
these processes: denoising, baseline  correction,
thresholding, peak detection, protein identification.
Here, our data reduction algorithm aim to optimize
the denoising and baseline correction processes, and
to improve the SNR ratio in an adaptive way.

3 Objective data reduction algorithm
The global architecture of the proposed algorithm
is:

Stepl: Dyadic sub-band decomposition

Step2: High frequencies (HF) optimal thresholding
Step3: Enhancement of the thresholded HF.

Step3: Spectra Reconstruction



Step4: Optimal Baseline correction
Step5: Peak detection
Step6: Protein identification

The dyadic sub-band decomposition is made in the
following way:
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Fig.1 : sub-band decomposition.

The denoising difficulty resides in the fact that the
noise is present in the upper and lower sub-band. It
is the case of the MALDI spectra. In addition to the
electronic noise, ones finds the chemical noise. lhis
is why, each sub-band on a given level is
decomposed to HF and LF sub-band [2,6,7,8].

At each pyramid level, high frequency sub-band is
thresholded by minimizing the fuzzy shannon
entropy. Then the spectra is reconstructed. It’s
clear that the decomposition/ reconstruction process
should be perfect. To answer to this question, we
have chosen a bio-orthogonal filter bank.

The optimal threshold computation process is found
by first, defining a membership function is :
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Where t is a given threshold level, C is a constant
that represents the difference between the maximum

(fmax) and minimum (fmin) high frequencies, Ho

and “1 are the mean values of the upper and lower
classes and h being the histogram .

The second step is to determine a measure of the
fuzziness at a given threshold t. One method for
measuring fuzziness is based on the idea of Shannon
Entropy [3,4,5,11]:

H,(X) =—xIn(x) - (1—x)In(1- x)

The Shannon Entropy of the entire spectra is:

i=i max
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The optimal threshold value is that minimizes E(t).
Then the useful high frequencies are amplified by a
factor G such as :

G — Uloctal

Glocal

Where, o ..is the HF sub-band standard deviation

total
(std), and g, is the current window std of the HF
sub-band.

After the reconstruction process, the baseline
spectra is removed according to the concept
provided by Golotvin [1]. Among N points the
minimal and maximal values are found. If their
difference does not exceed the noise std multiplied

by a definite factor n (Y max-Y min<no. ), the i-

noise

th point is considered to belong to baseline.

4. Results

4.1 DataExplorer reduction software Results
The raw masses spectrum given in Fig.1, is that of a
known protein coming from the rat species. It has
been identified as “Acyl-CoA dhydrogenase”
protein.
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Fig.2 “Acyl-CoA dhydrogenase” protein raw
spectrum protein coming from the rat species.

This latter spectra preprocessed with DataExplorer
Software leads to this following result
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Fig.3: mass peak results obtained with

DataExplorer.

The found masses compared to those theoretical
contained in the SwissProt Database lead us to the
protein identification given in fig.4.
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MOWSE #63(%) Mean Data IYIS- Protein P )
Score Masses Cov TIC Err Tol Digest Species Protein Name
Mached ppm ppm Index# (Da)pl

Acyk-CoA defrydrogenase, short-
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s
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46900 4(6) 200 63 399 58.0 112604 14094/6,5 Q58143 METIA Hypothefical protein MIO733
Zinc finger DHHC domain contzining
protein 13 (Hunfingtin interacting
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ln
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Hypothefical protein C03C10.4 in

chromosome [T

Oligosaccharyl transferase STT3
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membrane protein 1) (TMC)
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3 3069 4(6) 4.0 63 -9.10 57.7 37585 80598/8.3 P46978 MOUSE subunit homolog (B5) (Infegral

membrane protein 1)
9 3003 690 90 95 370 532 903 59049 P12250 BACTP URestselorinsation sequeice

Fig.4 : The MsFit software identification results.
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One notices that the protein candidate is identified
with a score of 3.586.10", a rate of covering (cov) of
36%, a mass precision of 29.7 ppm.

4.2 Our Data Reduction algorithm Results
The obtained preprocessed mass spectrum is:
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Fig.5 : Mass spectrum obtained with our algorithm.

The optimal threshold computation is done block by
block. The size of each block is 40.

The optimal threshold values (block per block)
calculated for the HF sub-band at level one are
given in the following figure:
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Fig.6: HF sub-band threshold values at level one.
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The matching result between experimental and
theoretical masses is given in Fig.8. The database
used is SwissProt.

#308 .
MOWSE (k) % % 1\%‘;:“ Dngla Dl\illi-st Pﬁt\;/m Accession Species Protein Name
Score  Masses Cov TIC g ; P

Matched ppm ppm Index#  (Daypl

Acyl-CoA dehydrogenase, short-
chain specific, mitochondrial
precursor (SCAD) (Butyryl-CoA
defrydrogenase)
Hypothetica proten ZK632.5 in
chromosome I
Tyrosine-protein kinase ZAP-70
3 5.840e+07 13(4) 26.0 43 -10.0 57.3 156784 69873/78 P43403 HUMAN (70 kDa zete-associated protein)
(Sykerelated tyrosine kinase)
Acyl-CoA dehydrogenase, short-
chain specific, mifochondrial
precursor (SCAD) (Bufyryl-CoA
delrydrogenase)
Alanry-RNA synthetase (Alanine--
{RNA ligase) (AlRS)
6 4165106 14(4) 18.0 46 -119 576 59871 65512/6.0 028422 ARCFU Hypothetical profein AF1856
Phenylaany-RNA synthetase beta
T4.139e+06 15(4) 22049 194 463 54505 92419/9.1 P59057 BUCAP chain (Phemylalanine-RNA ligase
beta chiin) (PheRS)
341296106 14(4) 130 46 0222 469 62462 94978/58 QUHY0S PSEAE DNA mismatch repir protein mutS
Transfertin-binding protein 2
precursor (TBP-2)

Fig.8: Theoretical masses matched in  SwissProt
DataBase.
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One notices that the protein candidate is identified
with a score of 1.63 10°, an overlapping rate (cov)
of 51%, a mass precision of 22.4 ppm.

5. Conclusion

Protein identification and characterization is one of
the most essential tasks performed in proteome
research. The precise detemination of the peptide
masses in the spectra , and highly discriminating
mass comparaison algorithm are therefore the keys
to accurate identification of proteins. We have
developed a precise and objective preprocessing
algorithm. Often, the thresholds analysis associated
with the peak detection is revealed that is preferable
to be little selective in the choice of peaks in the
mass spectrum, this is in order to avoid the loss of
apparently fictitious peaks that might eventually
appear to be useful. Our algorithm preprocessing is
done to be more selective and precise regarding the
masses peak determination. Indeed, the multiscale
fuzzy thresholding is revealed as an objective tool
regarding the peak selection. Obtained results
confirm this, the score and the cov coeff are
improved significantly. Introducing the fuzzy
Shannon Entropy in multiscale concept is therefore
an interesting idea.
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