
Optimisation Techniques for J2ME based Mobile Applications

PATRIK MIHAILESCU, HABIN LEE, and JOHN SHEPHERDSON
Intelligent Systems Research Centre, BT Group

B62 MLB1/PP12 Adastral Park, Martlesham Heath, IP5 3RE
UK

 http://cigserver3.info.bt.co.uk/isrc/IBSR/

Abstract: - Now days there are a wealth of mobile application development tools available for developers to
use, which are not limited to a particular device type. One of the most well-known development tools is the
Java 2 Micro Edition platform. Using this platform, mobile application developers can benefit from the same
features such as device independence and memory abstraction enjoyed by desktop application developers.
However due to the interpreted nature of the Java programming language, applications also inherit its
limitations such as excessive memory consumption, and slow execution. The aim of this paper is to present
and evaluate six known optimistaion techniques for improving the performance of a Java based mobile
application. These techniques are then applied to a real life multi-agent based mobile application to
demonstrate the performance and usability improvements gained.

Key-Words: - J2ME, Performance, Optimisation, Multi-agent system, PDA

1 Introduction
Previously, when an application developer wanted to
build an application for a mobile computing device,
their options were limited. Typically they were
forced to use proprietary development tools that
required them to have an intimate knowledge of
both tool and operating system, which inevitable
restricted their application to a particular device
type. Now days, application developers have greater
choice through the advent of new development tools
that free developers from dealing with low level
hardware/operating system details, and enabling
them to focus on enriching their applications
regardless of device type.
 The Java 2 Micro Edition (J2ME) platform is one
example of the new generation mobile application
development tools. The J2ME platform is targeted at
a wide spectrum of mobile computing devices such
as household applications, personal digital assistants
(PDA), and mobile/smart phones. To cater for the
different levels of device functionality, where for
instance, devices may provide anywhere between
64KB to 1MB+ of heap memory, the J2ME platform
defines the concept of profiles[4]. A profile defines
a set of APIs that are applicable for a similar group
of devices, such as mobile phones. Using this
approach, each profile can be optimised for a
specific device group by only including APIs that
are relevant to the available features and
functionality of the device. However, each profile
must also provide support for a common set of APIs
that are core to the Java™ programming language,
such as those provided within the java.lang package
(e.g. Object, String, System).

 Due to the interpreted nature of the Java
programming language, the J2ME platform suffers
from a number of limitations that affect overall
application performance. These include, execution
speed, memory management, and implementation
differences.
 The aim of this paper is to present and evaluate
six known optimisation techniques for improving
both the performance and usability of J2ME based
mobile applications. Although several of these
optimisation techniques are dependent on the
features provided within the IBM WebSphere Studio
Device Developer (WSDD) IDE, they can still be
applied to other IDEs that provide equivalent
features. We apply these optimisation techniques to
a real life multi-agent based mobile application to
measure the actual performance improvements.
 The outline of this paper is as follows; in the next
section we provide an overview of related work and
give a brief introduction into the WSDD IDE in
section three. Section four contains detailed
information regarding each of the six optimisation
techniques. In section five we apply these
techniques to a real-life multi-agent based mobile
application, and evaluate the performance
improvements. Finally in section six we conclude
this paper.

2 Related Work
There is a wealth of information available on
general optimisation techniques for the Java
programming language, and those specific to the
J2ME platform. Techniques include [11][14]:

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp181-186)

limiting the level of inheritance, minimizing the
level of object creation, using alternative approaches
to method synchronisation, eliminating inner
classes, avoiding string concatenation, using shorter
method/class names, using lazy class loading, etc.
The majority of these techniques are typically
applied during the design and coding stages of
application development.
 The difficulty in applying these optimisation
techniques is the ability to adequately measure the
true performance improvements achieved. For
example, it is difficult to pinpoint exactly which
optimisation has resulted in an increase in
application performance or a reduction in memory
usage. The optimisation techniques presented within
this paper are applied during the testing and
deployment stages of application development. Each
of the optimisation techniques presented within this
paper, can be individually measured to work out the
actual performance gains achieved.
 [8] provides a performance comparison between
the CDC specification (part of the J2ME platform),
Java 2, and Java 1.1. The static and dynamic
footprint of each VM was measured, including six
individual tests that measured areas such as object
creation, threading, and I/O. Our work differs in that
we provide optimisation techniques that are
designed to improve the performance of a J2ME
mobile based application.

3 Overview of Websphere Studio
Device Developer IDE
Before we present the six optimisation techniques,
we briefly provide an overview of the IBM WSDD
IDE [13], as several of the techniques are dependent
on features provided within this IDE. The WSDD
IDE enables the development of applications based
on the J2ME platform. This IDE supports
development for a diverse set of mobile computing
OS’s such as the Palm OS, the QNX OS, and the
MontaVista Linux OS.
 The WSDD IDE supports the majority of the
J2ME profiles currently defined within the Java
Community Process (JCP) such as the Foundation
profile [5], and the Mobile Information Device
Profile (MIDP) [6]. In addition, a supplementary set
of custom profiles (which have no relationship to the
J2ME profiles) is included. Custom profiles can be
used within environments, which require full
customisation over the APIs bundled with the VM
due to the limited availability of computing
resources. Developers are able to tweak the APIs
provided within custom profiles by excluding

classes/methods that are not required. Developers
are not permitted to modify any of the APIs
contained within J2ME profiles.

4 Optimisation Techniques Overview
The optimisation techniques presented within this
paper are aimed at optimising an application without
modifying the source code. These techniques can be
grouped into three levels: 1) VM, 2) Deployment,
and 3) Runtime. The VM level optimisation focus
on tailoring a VM for a particular target
environment, and application type. The deployment
level optimisations focus on tailoring an application
for its target environment through techniques such
as code reduction. Lastly, the runtime level
optimisations focus on fine-tuning the operational
performance of the application.
 All of the optimisation techniques presented
within this paper have been tested on an XDA
running the Pocket PC OS. The hardware properties
of the XDA are listed in Table 1. Before an
optimisation technique was tested, the XDA was
reset (soft reset). Each test was performed forty
times, unless otherwise stated. Finally, we used
version 5.5 of the IBM WSDD IDE.
Device Property Value
Model no PW10A1
ROM version 3.17.03 ENG
Radio version 4.20.00
CPU type ARM SA1110
Speed 206 Mhz
RAM size 64 MB
ROM size 32 MB
Table 1 Hardware properties of the XDA used to test
each optimisation technique.
 We will now discuss the optimisation technique
that falls within the VM level, followed by those
within the deployment level, and conclude with the
runtime level techniques.

4.1 VM Level Optimisation: Customising

the VM
Mobile computing devices differ significantly from
each other in terms of not only their hardware, and
OS functionality but also their physical appearance,
and usability properties. Therefore, a general
purpose VM that contains a set of generic APIs is
not suitable, and will impact on the overall
performance and usability of an application. This
optimisation technique is focused on customising
the VM for both the target environment and
application.

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp181-186)

 As mentioned in section three, a fully
customisable VM is available for each OS, which
can be customised in two ways: A) VM
functionality and 2) API set. Depending upon the
target OS, each VM is comprised of an initial set of
files that provide minimum level functionality. For
example, the ability to dynamically load Java classes
from the file system. Additional features can be
installed as required, although each new feature
added will consume certain computing resources.
 To demonstrate the benefits of this optimisation
technique we measured the start-up time and static
footprint size of three customised VMs. Two of the
VMs have been customised specifically for a single
profile, while the third VM has been set-up to use
any profile type. All three VMs contain the same
level of VM functionality.
 The results of this test are presented in Table 2.
The first two rows contain the results for a VM that
has been customised for a single profile: 1) JCL Xtr,
a custom profile, and 2) Foundation, a J2ME profile.
The last row contains the results for a VM that can
handle any type of profile; in this case it has been
bundled with only the Foundation profile. The
results show that customising the VM can not only
save storage space, but also significantly reduce an
application's start-up time.
Profile Type Static

Footprint
VM
Start-up time

JCL Xtr 656 kb 799 ms
Foundation 1689 kb 1962 ms
Foundation
(Generic VM)

1986 kb 2172 ms

Table 2 Test results from customising the VM
optimisation technique.

4.2 Deployment Level Optimisation (1):

Application Deployment
Effectively deploying applications on mobile
computing devices is an important issue that not
only affects an application’s performance but also its
usability. Lack of storage space, and application
start-up delays are just two issues that need to be
addressed. Typically Java applications are deployed
in JAR format, which provides a means of grouping
Java classes within a compressed file.
 This optimisation technique utilises an alternative
deployment format provided by the WSDD IDE,
JXE (J9 Executable format) [2]. The JXE format is
designed to reduce the delay when launching an
application, and lower the resource usage of the VM
when loading Java classes. This is achieved initially
by converting all the classes required by an
application into a JXE specific format, and then

ROMizing them into a single image. Within this
image all the classes have been resolved, and their
locations (address) and that of their methods have
been determined. Therefore, at runtime the level of
processing required by the VM during the class
loading process can be substantially reduced.
Compression is also supported.
 To demonstrate the benefits of this optimisation
technique, we compared the start-up time of a VM
that is customised for a single profile (Foundation),
which has its classes packaged in both JAR and JXE
format. The results of this test are presented in Table
3.
Deployment
Format

Storage
Space

Start-up
Time

JAR 900 kb 1963 ms
JXE 1149 kb 1464 ms
Table 3 Test results from the application deployment
optimisation technique number one.

4.3 Deployment Level Optimisation (2):

Code Redution/Optimisation
The second deployment level optimisation is aimed
at reducing the overall size of an application, and
improving (in certain parts) its execution. This is
achieved by applying known code reduction and
code optimisation techniques. The WSDD IDE
supports these techniques through a deployment tool
called Smartlinker.
 Code reduction involves removing any unused
classes, methods or fields from an application. This
can be performed automatically (by Smartlinker),
based on working out, from an initial set of classes,
the required references, or the classes can be
manually specified. Furthermore, techniques such as
code obfuscating, compression, and stripping debug
information from classes can also be applied.
 Code optimisation involves improving the
performance of certain parts of an applications code
through techniques such as in-lining methods [12],
call site devirtualization [3], and pre-compiling
classes/methods to native code using Ahead of Time
(AOT) compilation [10].
 No test will be provided to measure the benefits
of this optimisation technique, as it is dependent on
the context of an application.

4.4 Runtime Level Optimisation (1):

Persistent VM
To enable “instant on” applications, this technique
focuses on further reducing the start-up delay
experienced when launching an application. This
technique ensures that only one instance of the VM
is loaded, and that all applications are executed

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp181-186)

within this single instance. Therefore, only the first
executed application needs to load the VM, all
subsequently executed applications do not.
 This optimisation technique introduces an
alternative approach to launching a Java application.
This involves developing a native application to act
as a Java application launcher. This native
application will ensure that only one instance of the
VM is created, and that all Java applications are
executed within this single instance. To work out if
an instance of the VM is running, a dedicated
background Java application will need to be
executed within the VM, the first time the VM is
created. This dedicated background Java application
is known as the VM registry, and is responsible for
executing Java applications when requested by a
Java application launcher.
 Both the Java application launcher and the VM
registry application use the Windows messaging
API to communicate with each other. Figure 1
provides a sample scenario, which demonstrates
how this optimisation technique works when
executing two different Java applications. When the
first application (A) is launched an instance of the
VM is created, including the VM registry, which
will load application (A), and any other new
applications (such as (B)).

Fig. 1 Sample scenario demonstrating the use of the
runtime level optimisation technique number one.
No test will be provided to measure the benefits of
this optimisation technique.

5 Real Life Application
 We have applied these optimisation techniques to
improve both the performance and usability of a real
life multi-agent based application that runs on
mobile computing devices. This application
provides a team-based approach for job management
in the field of telecommunications service provision
and maintenance. Jobs are assigned to teams of
engineers based on a set of pre-defined business
rules such as an engineer’s geographic location and
skill set. A variety of services are available that
include: real-time job updating, job trading, job
delivery (both push and pull mode), and travel

planning. Further details regarding this application
are provided within [9].
 The underlying multi-agent platform used within
this application is the JADE-LEAP platform [1].
The JADE-LEAP platform is an optimised version
of the JADE platform that has been designed to run
on a variety of mobile computing devices. To cater
for the different types of mobile computing devices,
two tailored versions of the JADE-LEAP platform
are available, based on two separate J2ME profiles:
1) MIDP, and 2) Foundation. The JADE-LEAP
platform provides an agent execution environment
known as a lightweight container that provides
services such as messaging, service management
(e.g. discovery, hosting), and task scheduling to
locally executing agents. Further information on the
JADE-LEAP platform can be found at [1].
 This application uses the Foundation profile
version of the JADE-LEAP platform, which
comprises of 693 classes (includes inner classes),
while our application (the part that runs on the
device) consists of 183 classes (includes inner
classes). In the following sections we evaluate the
performance improvements gained as a result of
applying the presented optimisation techniques.

5.1 Application and VM Deployment
We applied the deployment level one and two
optimisation techniques to optimise our application
to the intended target environment. When applying
the deployment level two technique, we applied
most of the code reduction/optimisation techniques
to two files: 1) JADE-LEAP platform classes, and 2)
Application classes. We did not optimise the
Foundation profile’s classes.
 For both files we applied two common code
reduction techniques: 1) Compression, and 2)
Omitting debug information. We only removed
unused classes, methods and fields from just the
application classes. For both files we also applied
one code optimisation technique: In-lining methods.
We only applied the Call site devirtualization and
class, method final declaration technique to our
application’s classes.
 Table 4 provides details as to the storage
requirements for our application, which also
includes both the JADE-LEAP platform and
Foundation classes. The first row shows the storage
size for each file when deployed in JXE format
without applying any code reduction/optimisation,
whereas row two does apply these techniques.
Finally row three shows the storage size for each file
when deployed in JAR format, which have applied
two common code reduction techniques: 1)

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp181-186)

Compression, and 2) Omitting debug information.
We also removed unused classes, methods, and
fields from the application classes.
 Application JADE-

LEAP
Foundation

JXE 360 kb 970 kb 1149 kb
JXE
(optimized)

353 kb 954 kb 1149 kb

JAR 284 kb 756 kb 900 kb
Table 4 Storage requirements for our application.

5.2 Application Start-up Reduction (1)
To measure the start-up performance improvements
gained through applying the optimisation techniques
mentioned in the previous section we compared the
time taken to load two versions of our application.
One version contains all the applied optimisation
techniques, and the second version contains its
classes (JADE-LEAP platform, and application) in
JAR format, and use a generic VM that is bundled
with the Foundation profile (classes in JAR format).
The results from this test are shown in Table 5.
 To reduce the affects of network fluctuations for
each result we eliminated the highest two values,
and the lowest two values. Through applying the
deployment level one, two and VM level
optimisation technique we managed to reduce the
application start-up time by approximately 9.6%,
equivalent to 1.9 seconds.
Type VM

Start-up
Platform
Start-up

Application
Start-up

JAR 2234 ms 13904 ms 3677 ms
JXE 1953 ms 12261 ms 3684 ms
Table 5 Results for improving the start-up time of
our application.

5.3 Application Start-up Reduction (1) and
Usability Improvement
As shown in table 5 a significant amount of time of
the overall application start-up time is spent in
loading the underlying JADE-LEAP platform.
Therefore to eliminate this delay, we not only
applied the runtime level optimisation technique
number one, but we also modified our application
launch routinue. Within the application launch
routinue, a check is performed to locate a running
instance of the JADE-LEAP platform, and if an
instance is found the application is attached to it
(else one is created). Using this technique we were
able to reduce the start-up time of our application to
approximately under four seconds.

6 Conclusion
Within this paper we have presented a set of
optimisation techniques for improving the
performance and usability of mobile appliations.
Within the set, individual optimisations were
provided that can be used indpendently or
combined. We applied these techniques to a real
world mobile application and demonstrated the
performance improvements that were gained.
 Future work we plan to undertake includes
evaluating the benefits of AOT compilation, and
investigating other techniques that can address
performance issues such as memory usage, network
bandwidth, and battery power.

References:
[1] Berger, M., Rusitschka, S., Schlichte, M.,

Toropov, D., & Watzke, M., Porting Agents to
Small Mobile Devices - The Development of the
Lightweight Extensible Agent Platform. EXP in
search of innovation special issue on JADE, Vol.
3, No. 3, 2003, pp. 32-41.

[2] Kok, M. Developing a DB2 Everyplace Java
Application using WebSphere Studio Device
Developer. (2002). Retrieved January 7, 2004,
from http://www-
106.ibm.com/developerworks/websphere/register
ed/tutorials/0212_kheng/kheng.html.

[3] Ishizaki, K., Kawahito, M., Yasue, T., Komatsu,
H. & Nakatani, T., A study of devirtualization
techniques for a Java Just-In-Time compiler,
Proceedings of the 15th ACM SIGPLAN
conference on Object-oriented programming,
systems, languages, and applications, 2000, pp.
294-310.

[4] JAVA 2 PLATFORM, MICRO EDITION
FEQUENTLY ASKED QUESTIONS, (n.d).
Retrieved January 7, 2004, from
http://java.sun.com/j2me/reference/faqs/index.ht
ml.

[5] JSR 46 J2ME Foundation Profile, (n.d).
Retrieved January 7, 2004, from
http://jcp.org/en/jsr/detail?id=46.

[6] JSR 118 Mobile Information Device Profile 2.0,
(n.d). Retrieved January 7, 2004, from
http://jcp.org/en/jsr/detail?id=118.

[7] Just-In-Time Compilers. (n.d). Retrieved January
7, 2004, from
http://www.bytecodes.com/techJITC.html.

[8] Laukkanen, M. (n.d). Java on Handheld Devices
- Comparing J2me Cdc to Java 1.1 And Java 2.
Retrieved January 7, 2004, from
http://citeseer.nj.nec.com/473890.html.

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp181-186)

[9] Lee, H., Mihailescu, P., & Shepherdson, J., A
Multi-Agent System to Support Team-Based Job
Management in a Telecommunications Service
Environment, EXP in search of innovation
special issue on JADE, Vol. 3, No. 3, 2003, pp.
96-105.

[10] Muller, G., Moura, B., Bellard, F., & Consel,
C., Harissa: a Flexible and Efficient Java
Environment Mixing Bytecode and Compiled
Code. Proceedings of the Third USENIX
Conference on Object-Oriented Technologies
and Systems, 1997.

[11]Shirazi, J. (2003). Java Performance Tuning
(2nd Edition).

[12] Tyma, P. Tuning Java Performance. (n.d).
Retrieved January, 7, 2004, from
http://www.ddj.com/documents/s=962/ddj9604e/
.

[13] WebSphere Studio Device Developer
WebSphere software, (n.d). Retrieved January 7,
2004, from http://www-
306.ibm.com/software/wireless/wsdd/.

[14]Wilson, S., and Kesselman, J. (2000). Java
Platform Performance: Strategies and Tactics.

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp181-186)

