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Abstract:- We develop a solver for nonseparable, self adjoint
elliptic equations with a variable coefficient. If the coefficient
is the square of a harmonic function,a transformation of the
dependent variable, results in a constant coefficient Poisson
equation. A highly accurate, fast, Fourier-spectral algorithm
can solve this equation. When the square root of the coeffi-
cient is not harmonic, we approximate it by a harmonic func-
tion. A small number of correction steps are then required
to achieve high accuracy. The procedure is particularly ef-
ficient when the approximation error is small. For a given
function this error becomes smaller as the size of the domain
decreases. A highly parallelizable, hierarchical procedure al-
lows a decomposition into small sub-domains. Numerical
experiments illustrate the accuracy of the approach even at
very coarse resolutions.

Key-Words: - Fast spectral direct solver, Poisson equation,
nonseparable elliptic equations, correction steps.

1 Introduction

Variable coefficient elliptic equations are ubiquitous in many
scientific and engineering applications the most important
case being that of the self-adjoint operator appearing for ex-
ample in diffusion processes in non uniform media. Many re-
peated solutions of such problems are required when solving
variable coefficient or non linear time dependent problems
by implicit marching methods.

Application of high-order (pseudo) spectral methods,
which are based on global expansions into orthogonal poly-
nomials (Chebyshev or Legendre polynomials), to the solu-
tion of elliptic equations, results in full (dense) matrix prob-
lems. The cost of inverting a fullN × N matrix without
using special properties isO(N3) operations [2]. The spec-
tral element method allows for some sparsity. The Fourier
method for the solution of the Poisson equation gives rise to
diagonal matrices and has an exponential rate of convergence
but looses accuracy due to the Gibbs phenomenon for non-
periodic boundary conditions.

Our method to resolve the Gibbs phenomenon presents
the RHS as a sum of a smooth periodic function and another
function which can be integrated analytically. We were able
to implement this idea to two or three dimensions.This ap-
proach is sometimes called ”subtraction”. Other approaches
to the resolution of such problems appear in [4, 5, 8] and
[1, 7].

The subtraction technique for the reduction of the Gibbs
phenomenon in the Fourier series solution of the Poisson
equation goes back to Sköllermo [9] who considered,

∆u = f (1)

in the rectangle[0, 1]×[0, 1] with non periodic boundary con-
ditions. We note that the subtraction algorithm in [9] was of
limited applicability because of a technical difficulty which
we resolved.

The subtraction technique (in the physical space) has
the following advantages:

a) After subtraction, the Fast Fourier Transform can be ap-
plied to the remaining part of RHS with a high conver-
gence rate.

b) The algorithm preserves the diagonal representation of
the Laplace operator, (unlike Chebyshev and Legendre
expansions), hence the invertion of the matrix is trivial.

c) The computation of the subtraction functions is even
less time consuming than the application of the FFT.

In the framework of the present paper:

1. We develop first a fast direct algorithm for the solution
of Eq. (2) for any functiona(x, y), such thata(x, y)1/2

is harmonic. It is based on an improvment of the fast
direct solver of [1] and a transformation described in
[3].

2. If a(x, y)1/2 is not harmonic, we approximate it by a
harmonic function. The numerical scheme then applies
the basic algorithm in a sequence of correction steps
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(the procedure is described in Section 2 and tested in
Section 3).

3. An adaptive domain decomposition approach was im-
plemented which improves the approximation for any
functiona(x, y) and reduces the number of corrections
step required (to about three).

2 Outline of the Algorithm

We solve an elliptic equation

∇ · (a(x, y) ∇u(x, y)) = f(x, y), (x, y) ∈ D, (2)

whereD is a rectangular domain, with the Dirichlet bound-
ary conditions

u(x, y) = g(x, y), (x, y) ∈ ∂D. (3)

We assumea(x, y) > 0 for any(x, y) ∈ D.
Following [3] we make the change of variable

w(x, y) = a(x, y)1/2u(x, y), (4)

then Eq. (2) takes the form

∆w(x, y)− p(x, y)w(x, y) = q(x, y), (5)

where

p(x, y) = ∆(a(x, y)1/2) · a(x, y)−1/2,

q(x, y) = f(x, y) · a(x, y)−1/2. (6)

In casea(x, y)1/2 is a harmonic function, Eq. (5) becomes
the Poisson equation inw:

∆w(x, y) = q(x, y) (7)

This leads to the fast direct algorithm for the numerical so-
lution of Eq. (2), wherea(x, y)1/2 is a harmonic function.

Algorithm A

1. Using the modified spectral subtractional algorithm
which was described in the introduction, we solve
Eq. (7) with the boundary conditions
g̃(x, y) = a(x, y)1/2 · g(x, y).

2. The solution of Eq. (2) is
u(x, y) = w(x, y) · a(x, y)−1/2.

Thus, this algorithm enables the solution of Eq. (2)

∇ · (ã(x, y) ∇u) = f(x, y), (8)

where
∆(ã(x, y)1/2) = 0

as a constant coefficient problem. Let us now consider the
case wherea(x, y)1/2 is not exactly harmonic but can be well
approximated by a harmonic functionã(x, y)1/2. This means
that the difference

ε(x, y) = a(x, y)− ã(x, y) (9)

is small. Denote byu0(x, y) the solution of (8) with bound-
ary conditions (3) and introduce
ũ(x, y) = u(x, y) − u0(x, y), whereu(x, y) is an exact so-
lution of Eq. (2). Then (2) can be rewritten as

∇ · [(ã(x, y) + ε(x, y)) ∇(u0 + ũ)] = f(x, y). (10)

Taking into account (8), we obtain

∇ · (ã(x, y) ∇ũ) = −∇ · (ε(x, y) ∇(u0 + ũ)) , (11)

whereũ(x, y) satisfies the zero boundary conditions as the
difference of two functionsu(x, y) andu0(x, y), which both
satisfy (3). Sincẽu is unknown, the following correction pro-
cedure is suggested:

∇ · (ã(x, y)∇u1) = −∇ · (ε(x, y)∇u0) (12)

∇ · (ã(x, y)∇un+1) =

−∇ · (ε(x, y) ∇(u0 + un)) , n ≥ 1. (13)

Subtracting (11) from (13) we have

∇ · (ã(x, y) ∇(un+1 − ũ)) =

−∇ · (ε(x, y) ∇(un − ũ)) . (14)

Suppose‖ε‖ ≤ s‖a‖ in some norm, wheres is small, and
denoting byun the corrected solution aftern correction steps
(un = u0 + un). Since the exact solution isu = u0 + ũ, it
follows that the error decreases according to:

‖un+1 − u‖ ≤ s‖un − u‖ (15)

Thus the algorithm for the solution of (2) will be:

1. The coefficienta(x, y) in (2) is approximated bỹa(x, y)
such that̃a(x, y)1/2 is a harmonic function in the do-
mainD. Equation (8) is solved using
Algorithm A.

2. Several correction steps are made using (13) until the
desired accuracy is attained.
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To approximatea(x, y)1/2 by a harmonic function we con-
sider first the bilinear function

b̃(x, y) = c11 + c12x + c21y + c22xy, (16)

which takes on the corner values ofa(x, y)1/2 This approx-
imation can be improved by matching more points on the
boundary of the square[0, 1]× [0, 1] by the addition of func-
tions of the type

ϕ(x, y) = dk sin(πkx) sinh(πky) (17)

which do not affect corner points. Dividing the domain to
smaller squares improves the error according to the square of
the size of the subdomain.

Note that the simplest approximation with bilinear
functions has the following advantage: if we use domain
decomposition (see Section 4), then the collection ofã(x, y)
approximated in subdomains while not smooth is a contin-
uous function, this simplifies very much the inter domain
matching process. This is true also for (17). Approximations
involving interior values ofa(x, y)1/2 do not enjoy this
useful property.

3 Numerical results

First let us demonstrate the rate of convergence of the im-
proved subtraction algorithm in the case wherea(x, y)1/2 is
a harmonic function.
Assume thatu is the exact solution of Eq. (2) andu′ is the
computed solution. We will use the following measure to
estimate the errors:

εMAX = max |u′i − ui| (18)

Example 1.Consider the equation witha(x, y) =
(x + 1)2(y + 0.5)2, the right hand side and the boundary
conditions correspond to the exact solutionu(x, y) =
(x+1)2 +(y+0.5)2 in the domain[0, 1]× [0, 1]. The results
are presented in Table 1.

Nx ×Ny εMAX(4) εMAX(6)
8× 8 1.03e-5 1.56e-08

16× 16 8.08e-7 3.03e-10
32× 32 5.67e-8 5.39e-12
64× 64 3.76e-9 2.05e-13

Table 1: MAX error for for the fourth order (4) and sixth

order (6) subtraction methods.

Now let us proceed to an example, wherea(x, y)1/2 is
not harmonic.

Example 2. Consider the equation witha(x, y) =
(x + 1 + r sinx)2(y + 0.5)2, the right hand side and the
boundary conditions correspond to the same exact solution
as in Example 2. Here we need to apply a few correction
steps in order to get the desired accuracy. We used (16) for
the approximation ofa(x, y)1/2 by a harmonic function.
The results forr = 0.5 are presented in Table 2.

If we insist to get the same accuracy as in the previous
example, it is necessary to apply from 4 correction steps for
8× 8 points to 6 correction steps for64× 64 points. It is ex-
pected that with the growth ofr more correction steps would
be required.

Nx ×Ny CS = 1 CS = 2 CS = 3
8× 8 7.16e-4 1.98e-5 5.72e-7

16× 16 7.26e-4 2.02e-5 5.87e-7
32× 32 7.29e-4 2.03e-5 5.86e-7
64× 64 7.30 -4 2.03e-5 5.88e-7

Nx ×Ny CS = 4 CS = 5 CS = 6
8× 8 2.16e-8 1.33e-08 1.33e-08

16× 16 1.75e-8 3.69e-10 3.08e-10
32× 32 1.74e-8 5.22e-10 1.98e-11
64× 64 1.74e-8 5.35e-10 5.66e-11

Table 2: MAX error for the same exact solution and

a(x, y) = (x + 1 + 0.5 sin x)2(y + 0.5)2 for various numbers

of correction steps in the domain[0, 1] × [0, 1]. CS is the number

of Correction Steps.

4 Domain Decomposition

The present algorithm incorporates the following novel ele-
ments:

1. It extends our previous fast Poisson solvers [1, 7] as it
provides an essentially direct solution for equations (2)
wherea(x, y)1/2 is an arbitrary harmonic function, in
particular, a bilinear function

a(x, y)1/2 = c11 + c12x + c21y + c22xy.

2. In the case wherea(x, y)1/2 is not harmonic, we ap-
proximate it byã(x, y)1/2 and apply several correction
steps to improve the accuracy.

However high accuracy for the solution of (2) requires
an accurate approximation ofa(x, y)1/2 by a harmonic func-
tion. Such an approximation is not always easy to derive
in the global domain, however it can be achieved in smaller
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subdomains. In this case we suggest the following Domain
Decomposition algorithm.

1. The domain is decomposed into smaller rectangular
subdomains. Where the boundary of the subdomains
coincides with full domain boundary we take on the
original boundary conditions. For other interfaces we
introduce some initial boundary conditions which do
not contradict the equation at the corners, where the left
hand side of (2) can be computed. The functiona(x, y)
is approximated bỹa(x, y)1/2 in each subdomain such
thatã(x, y)1/2 is harmonic. An auxiliary equation (8) is
solved in each subdomain.

2. The collection of solutions obtained at Step 1 is conti-
nuous but doesn’t have continuous derivatives at domain
interfaces. To further match subdomains, a hierarchical
procedure can be applied similar to the one described in
[6]. For example, if we have four subdomains 1,2,3 and
4, then 1 can be matched with 2, 3 with 4, while at the
final step the merged domain 1,2 is matched with 3,4.

Example 3. In Fig. 1 we illustrate the effectiveness of
the domain decomposition approach by solving the one di-
mensional variable coefficient equation where the coefficient
function is not harmonic. We solve the equation witha(x) =
(2x+3+sin(πx))2 with exact solutionu(x) = sin(πx). We
change the number of domains (D) from 1 to 8. Obviously
the correction procedure works much better then the subdo-
mains become smaller. With 4 domains and with only 2 cor-
rection steps we reach an error of order10−6, with 8 domains
we get10−8. Thus the present approach behaves essentially
as direct fast method for the self adjoint PDE. The Domain
Decomposition of course has the further advantage of easy
parallelization on massively parallel computers.
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Figure 1: MAX error for the a(x, y) = (x + 1 +

0.5 sin x)2(y + 0.5)2 for various numbers of subdomains. The

total number of points in the domain [0,1] remains unchanged and

equals to 128. Number of subdomains used (D) is followed by the

actual number of points used in each subdomain (N).

Example 4. In Table 3 and 4 we illustrate the re-
sults of applying the domain decomposition approach
by solving the two dimensional variable coefficient
equation where the coefficient function is not har-
monic. We consider the equation witha(x, y) =
(1/2 + x2 + y) sin(1/3 + x + 2y) + 1, corresponding to the
exact solutionu(x, y) = (1/4 + x + y2) sin(1/3 + 2x + y).
In the domain[0, 1] × [0, 1], the bilinear approximation
to a(x, y)1/2 isn’t good. As a result, a large number of
correction steps is needed. When we solve the same equa-
tion but in smaller subdomains, thea(x, y) could be well
approximated bỹa(x, y) and, as a consequence, we achieve
better results. A prime factor that determines a numerical
approximation is the ratioε(x, y)/ã(x, y)1/2. Other factor
that has an influence on the numerical results is the order of
the subtraction method used for solution of (1).

Domain Nx ×Ny CS = 2 CS = 5 CS = 10
[0 1]× [0 1] 64× 64 9.85e-2 4.58e-2 2.03e-2
[0 1

2 ]× [0 1
2 ] 32× 32 2.09e-6 1.73e-8 1.73e-8

[0 1
4 ]× [0 1

4 ] 16× 16 3.08e-8 3.00e-8 3.00e-8

Figure 3: MAX error. Fourth(4) order subtraction method

was used trough calculation of the correction steps.

Domain Nx ×Ny CS = 2 CS = 5 CS = 10
[0 1]× [0 1] 64× 64 9.85e-2 4.58e-2 2.03e-2
[0 1

2 ]× [0 1
2 ] 32× 32 2.10e-6 1.48e-10 3.02e-12

[0 1
4 ]× [0 1

4 ] 16× 16 6.31e-9 1.31e-11 1.31e-11

Figure 4:MAX error. Sixth(6) order subtraction method was used

trough calculation of the correction steps.
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