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Abstract: Object recognition is at the top of a visual task hierarchy. In its general form, this is a very difficult 
computational problem, which will probably play an important role in the eventual building of intelligent 
machines. A large number of psychological and neurophysiologic studies support the idea that humans 
represent three-dimensional objects internally as a small set of bidimensional images. In this work we present a 
scheme for recognition of 3D objects from 2D images. The proposed approach begins by identifying the class 
of the observed object and only then proceeds to determine its individual identity. In this way, we are able to 
reduce the computational costs of an exhaustive comparison with all known objects. The developed system has 
no previous knowledge about existing objects and builds the object basis as it operates on given images. 
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1 Introduction 

A three-dimensional object can produce excitatory 
patterns in the retina that vary widely depending on 
the object’s position relative to the observer. In spite 
of that, we are able of perceiving these different 
patterns as produced by the same object. This ability 
of constant recognition from such input signals is the 
result of the brain’s ability of establishing internal 
representations of the objects. The nature of such 
viewpoint invariant representations and the way they 
can be acquired is still one of the major unsolved 
problems in neuroscience and computational vision. 

There are several behavioural studies that support 
a view-based model for the three-dimensional object 
representation used by our visual system. If we 
present human subjects a set of unfamiliar views of an 
object previously seen at a limited range of attitudes, 
there is an increase in the recognition error rate with 
misorientation relative to the training attitude [11]. 
The effect is reduced if intermediate views are 
considered. The performance is not linearly 
dependent on the shortest angular distance in 3D to 
the best view but is significantly correlated with an 
image-plane feature by feature deformation distance 
between the presented view and the best (shortest 
response time and lowest error rate) view [2]. 

Therefore, measurement of image-plane similarity 
to a few feature patterns seams to be an appropriate 
model for the mechanism used by the human visual 
system to recognize objects across changes in their 
3D orientation.  

Several physiological studies with monkeys also 
provide evidence of view-based processing by the 
brain during object recognition. Measurements of the 
activity in the inferior temporal cortex (IT) of the 
monkey, which has long been known to play an 
essential role in visual object recognition, support the 
results obtained in behavioural studies. Populations of 
IT neurons were found that responded selectively to 
views of previously unfamiliar objects.  The cells 
discharged maximally to one view of an object, and 
their response declined gradually as the object was 
rotated away from this preferred view [7]. 

In summary, we can say that the representation of 
objects in the form of linked unique views seams to 
be sufficient for a wide range of perception situations 
and tasks. 

The present work describes an attempt of 
incorporating 3D object recognition from 2D images 
in the work presented in [14]. The adopted approach 
is based on the orthographic projection of 3D objects 
in 2D images and consists of two stages. In the first 
stage, the categorization stage, the image is compared 
to prototype objects. For each prototype, we 
determine the view that’s closest to the image and, if 
that view is similar to the image, we classify the 
object as belonging to the class represented by the 
prototype. In the second stage, the identification 
stage, the observed object is compared with the 
individual models in the same class. Each class 
groups objects with similar forms. For each model, a 
view is searched that is coincident with the image. If 
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such a view is found, the identity of the object is 
established.  

This recognition process follows closely the 
scheme proposed by Ullman and Basri [8]. However, 
it distinguishes from the work presented there as we 
tried to develop a recognition method where the 
knowledge base is built in an incremental way, 
without previous construction/categorization of an 
image library. This has lead to several modifications 
to the scheme proposed in [8], some of which have 
not a theoretical justification and will need further 
research.  

The system has no initial knowledge and the 
object classes and models are built as new objects are 
seen. When the system is presented with the first 2D 
image, it uses it to build its first object. This object 
will initially be described by a single view, namely 
that first seen image. It will also be the single element 
of a new class, for which it will also be the prototype. 
After that, when given an object’s image I, the system 
proceeds as follows. First, as explained above, it 
determines, for each known prototype, the closest 
view to the image and, if that view is similar to the 
image, the object is classified in the class represented 
by the prototype. If no similar views are found, the 
system uses the image to build a new class and object, 
using the same procedure that was described for the 
first image. If the object is successfully classified in 
an existing class, then the system tries to identify the 
object by comparing the given image to aligned views 
of all the objects already known to belong to the same 
class. During this stage, three things can happen. If a 
view is found that is coincident with the image, then 
the object is identified as the object represented by the 
model that originated such view. If no model can 
produce a view similar to the image, then image I is 
used to build a new model for the class. As a third 
possibility, the system can find a model with a view 
that is very close to I. In this case, the system rebuilds 
that model’s representation adding to it the new view 
I. If more than one model are found on the same 
conditions, those models are merged in a single 
model. 
 
 
2 Linear Combination Model 

The representation scheme we adopted results 
from the linear combination model for 3D objects 
proposed by Ullman and Basri [12]. In that paper it’s 
demonstrated that the set of all possible images 
obtained by orthographic projection of a 3D object 
that is subject to rigid transformations and scaling 
between images belongs to a linear space spanned by 
a small number of 2D images of the same object. 

An object is modelled by a matrix M, with 
dimension n k× , where n is the number of 
characteristic points and k, the number of columns in 
M, is related to the number of degrees of freedom the 
object has. 

Let O be a 3D object that contains n characteristic 
points ( ), , ,1i i iX Y Z i n≤ ≤ . Under weak perspective 
projection, the object’s position in the image, after 
rotation R, translation t

G
 and scaling s, is given by 

11 12 13

21 22 23

i i i i x

i i i i y

x sr X sr Y sr Z st
y sr X sr Y sr Z st
= + + +
= + + +

  (1) 

where ijr are the rotation matrix components, xt and 

yt are the horizontal and vertical components of the 

translation vector t
G

, respectively, and s is the scaling 
factor. 

Denote by , , , , nX Y Z x y∈ℜ
G G G G G

the vectors 
composed of the coordinates , , ,i i i iX Y Z x  and iy , 

respectively, and define ( )1 1,...,1 n= ∈ℜ
G

. Then, we 
can rewrite (1) using vector form 

11 12 13

21 22 23

i i i i x

i i i i y

x sr X sr Y sr Z st
y sr X sr Y sr Z st
= + + +
= + + +

  (2) 

where 
a1 = sr11 b1 = sr21 
a2 = sr12 b2 = sr22 
a3 = sr13 b3 = sr23 
a4 = stx b4 = sty 

 
Hence,  

{ }, , , ,1x y span X Y Z∈
GG G GG G

 

Notice that the translation component can be 
ignored if the centroids of the points ( ), ,i i iX Y Z  and 

( ),i ix y  are moved to the origin, that is, if we 
translate the object’s and image points in such a way 
that 

( ) ( )

( ) ( )

1

1

, , 0,0,0 ,

, 0,0

n

i i i
i

n

i i
i

X Y Z

x y

=

=

=

=

∑

∑
 

Therefore, all the views of the rigid object O are 
contained in a linear space 3D (ignoring the 
translation). The idea, now, is to use images of the 
object to build a base for this space. It can be shown 
that, in general, two views are sufficient [12]. 

Let ( )1 1 1,p x y=
G G

 be a 2D image of O and let 

( )2 2 2,p x y=
G G

 be the image of O obtained after a 
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rotation R (a 3 3×  matrix). Consider, then, a new 
view of O, ( )3 3 3,p x y=

G G
, obtained by applying a new 

rotation to O. We will have: 
3 1 1 2 1 3 2

3 1 1 2 1 3 2

x a x a y a x
y b x b y b x
= + +
= + +

G G G G
G G G G  (3) 

as long as the two images p1 e p2 don’t differ only by 
a pure rotation along the line of sight [12].  
The described linear combination of two views is 
applicable to general linear transformations. To 
impose rigidity (with possible scaling), we need to 
impose some restrictions on the coefficients (a1, a2, 
a3, b1, b2, b3). In our implementation we ignored those 
restrictions with the risk of having some false positive 
misidentifications. However, the likelihood of such 
misidentifications is negligible if the objects contain a 
sufficient number of points. 

Resuming, following the exposed scheme, an 
object is represented by a matrix M whose columns 
are built from views of the object, translated so that 
the centroid is at the origin, forming a basis for the 3D 
space.  

The object’s views can be built as follows  
,

,

x Ma

y Mb

=

=

G G
GG  (4) 

where , ka b ∈ℜ
GG

 are the vectors formed with the 
coefficients in equation (3). Note that the two linear 
systems can be merged in a single system by 
constructing a modified model matrix, 

0
0

ax M
y M b

    
=     

     

GG
GG  

The recognition process involves computing the 
transform vectors ,  a b

GG
. 

Note that this scheme of linear combination of 
images assumes that the same object’s points are 
visible in different views. When the views are 
sufficiently different this approach may no longer be 
valid because of auto occlusion. To represent an 
object from every possible direction (for example, 
seen from the front and behind), we will need several 
different models of this kind. 

 
 

3 Categorization Stage 
Recognizing an object implies, as a first step, 

determining the object’s category by comparing it 
with prototype objects that are typical exemplars of 
their classes. For a given prototype, we compute the 
view that is most similar with the image. That view is 
compared with the actual image and the result of this 

comparison determines the identity of the object’s 
class.  

A class of objects is a pair C = (P, {M1, M2, ..., 
Ml}), where P is a prototype object for the class and 
M1, M2,... Ml are model objects. The prototype and 
models are represented by matrices of point locations, 
according to the description made in the previous 
section. 

Objects in the same class roughly share the same 
topology and there is a “natural” correspondence 
between them. This correspondence is made explicit 
by the order of the row vectors in the models. 
Specifically, given a prototype P and models M1, 
M2,... Ml, we order the lines in these models in such a 
way that the first characteristic point in P corresponds 
to the first characteristic point in each model M1, 
M2,... Ml, the second characteristic point in P 
corresponds to the second characteristic point in each 
model M1, M2,... Ml, and so forth. The importance of 
this ordering will become evident in the following 
sections. 

To categorize an object observed in an image we 
need to align the prototype objects with the image so 
we can compare them. Therefore, for each prototype, 
we solve, first, the correspondence between the 
prototype and the image. Then, using the computed 
correspondence, the nearest prototype’s view is 
determined.  

Given a prototype P and an image I, we generate a 
vector vG from the image with the location of the 
image’s characteristic points ordered in 
correspondence with the prototype points: the first 
point in vG corresponds to the first point in P and so 
forth. The transform vector aG that brings the 
prototype points as close as possible to the 
corresponding image points is the vector that 
minimizes the Euclidian distance between the 
prototype and image points 

'

'min
a

Pa v−G
G G

 

If P is an over determined matrix, that is, if P has 
dimension n k× , with n > k and verifies rank(P) = k, 
then the solution of the above equation is given by 

a P v+=
G G

 (5) 

where ( ) 1T TP P P P
−+ = denotes the pseudo-inverse 

of P. Then, the nearest prototype’s view, pG , is 
obtained by applying P to aG  

p Pa PP v+= =
G G G

 
View pG is then compared with the image and its 

similitude determines the object’s classification. The 
matching quality between prototype and image is 
given by 
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( )
( )

,
PP I vp v

D P v
v v

+ −−
= =

GG G
G

G G  (6) 

where I represents the identity matrix. The division by 
the norm of vG  normalizes the metrics (6) eliminating 
effects due to eventual scaling. 

If the object belongs to the class represented by P, 
then the function defined by (6) will attain its minimal 
value when vG is ordered in correspondence with P. 
Any other ordering of the points will increase the 
function value. Therefore, function D can be used as 
an objective function for determining the 
correspondence between prototype and image. 
Formally, denoting by π a permutation matrix, we 
define:  

( ) ( )ˆ , min ,D P v D P v
π

π=
G G

 (7) 

If we now define the cost of matching the point pi 
in the image pG with the poin qj in image vG  as 

( ) ( )2
,i j i jCij p q p q= −  

then minimizing (7) is equivalent to minimizing the 
function 

( ) ( )( )
1

,
n

ij i i
i

H C p qππ
=

=∑  (8) 

subject to the restriction that the matching is one-to-
one, that is, π is a permutation. This is an instance of 
the square assignment problem (or weighted bipartite 
matching), which can be solved in O(n3) time using 
the Hungarian method. In our implementation we 
used the more efficient method of [9]. The input to 
the attribution problem is a square cost matrix Cij and 
the output is a permutation π that minimizes (8). 

In order to have robust handling of outliers, we 
add “dummy” points to each points set with a 
constant matching cost of εd. A point will be matched 
with a “dummy” whenever there is no real match 
available at smaller cost than εd. Thus, εd can be 
regarded as a threshold parameter for outlier 
detection. In a similar way, when the number of 
sample points on two sets is not equal, the cost matrix 
can be made square by adding “dummy” points to the 
smaller points set. 

An object seen by view vG belongs to the class 
represented by prototype P if  

( )ˆ ,D P v ε<G  
for a certain constant ε > 0. 

In summary, given a prototype P and an image I, 
the correspondence between P and I is solved by 
minimizing the metrics (7) over all the possible 
permutations of vG  and, if the obtained minimum is 

below threshold ε, then the object’s class is 
determined. 

Although the general classification scheme 
defined doesn’t depend on the specific distance 
metrics chosen, the metrics affects the division of the 
models in classes as well as the selection of optimal 
prototypes for those classes. We will show in section 
5 how we can chose the optimal prototypes using the 
metrics (7). 

In the following section we will explain how the 
transform vector can be reused to align the image 
with the specific models. Hence, after the 
categorization, the cost of comparing the image with 
each specific model is substantially reduced, as the 
complex part of recovering the transformation that 
relates the models with the image is applied only to 
the prototype objects. 

 
 

4 Identification Stage 
After categorizing the object, we seek determining 

its individual identity. In this stage, the image is 
compared with all the models belonging to the class 
obtained in the categorization process. For each 
model, the transformation that aligns the model with 
the image is determined, if it exists, using the 
information obtained in the categorization stage. 

Let vG be a view of the model object Mi, verifying 

iv M b=
GG

 (9) 

for a certain transform vector b
G

. Then, it can be 
shown that  

ib A a=
G G

 (10) 
where aG is the transform vector for the prototype, 

given by (5), and ( ) 1

i iA P M
−+= , assuming 

( )det 0iP M+ ≠ . 

This result is valid because the characteristic 
points in the prototype and in the models are aligned. 

The linear transformation defined by matrix Ai is 
independent of the particular view vG considered. That 
is, for any view of the object, the same transformation 
maps the prototype’s transformation corresponding to 
the view in the correct model transformation. This 
means that the transformation Ai can be computed 
ahead and stored together with the model. 
Furthermore, the transformation Ai allows recovering 
the model’s transformation independently of the 
matching quality between the prototype and the 
image. Even when the prototype aligns badly with the 
image, the transformation that aligns the model with 
the image is determined correctly. 
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As mentioned above, Ai exists if P+Mi is invertible. 
This condition is equivalent to require that the two 
column spaces of P and Mi aren’t orthogonal in any 
direction. This condition is verified, in general, as 
long as the two objects are relatively similar. 

Denote '
i i iM M A= the model Mi aligned with the 

prototype P. '
iM  model the same object as Mi, since 

the column vectors of both matrices span the same 
space. Moreover, the aligned model '

iM is brought by 
the prototype transform aG to a perfect alignment with 
the image. Indeed, we can rewrite (10) as 

'
iv M a=

G G
 (11) 

Therefore, if the models are aligned with the 
prototype, the transformation computed in the 
categorization stage can be used for identification 
without further manipulations. This result allows 
simplifying the identification process. The models M1, 
..., Ml are aligned with the prototype P applying the 
corresponding transformations A1, ..., Al. In the 
recognition, the prototype transform a P v+=

G G
is 

applied to the aligned models ' '
1,..., lM M . 

In the above description it is assumed that there is 
a total correspondence between prototype and image. 
However, this assumption is not mandatory. If the 
correspondence isn’t total, the previous results are 
still valid if we eliminate, in matrices P e M, the lines 
corresponding to points with no correspondence in the 
image. 

Also, note that the models in a class can have 
different degrees of freedom. Let ki be the width of 
model Mi in a certain class C = (P, {M1, M2, ..., Ml}), 
1 i l≤ ≤ . Then, the prototype for this class, P, will 
have width 

{ }1max , ,p lk k k= …  
In this case, the prototype-to-model transform Ai 

will be 

( )i iA P M
++=  

and Ai will have dimension i pk k× . 
 
 
5 Constructing the optimal Prototypes 

In this section we will show how it is possible to 
determine the optimal prototype for a given class 
under metrics (7). 

Given a class of objects, the optimal prototype is 
the object that most resembles the class’s objects. In 
our formulation, such object must share the maximal 
number of characteristic points with the objects in the 
same class. The positions of those points in the 
prototype must be as near as possible to their 

positions in the objects and the prototype-to-model 
transformations must be as stable as possible. The 
prototype can be computed then using a principal 
component analysis. 

The optimal prototype for a certain class is defined 
as the object P that minimizes the cost function 

( ) ( )
1 1i

n
T

i i
i v

E P PP I v dv
= =

= −∑ ∫G
G G

  (12) 

which corresponds to the sum, for every model in the 
class, of the distance ( ), iD P vG  between the prototype 
and all the model’s possible views, with unitary norm. 

In [8] it is proven that the prototype that 
minimizes equation (12) can be obtained by the 
following algorithm: 
1 – Verify that the column vectors of each model’s 
matrix Mi (1 ≤ i ≤ l) are orthogonals. If that’s not the 
case, apply the Gram-Schmidt orthogonalization 
method. 
2  –  Build the symmetric matrix n x n: 

                                  
1

l
T

i i
i

F M M
=

= ∑  (13) 

3 – Find the k eigenvectors of F corresponding to the 
dominant eigenvalues. The optimal matrix P is built 
using these vectors. 

The prototype determined by this process is 
independent on the chosen basis for the models. This 
implies that, in order to build the prototype, it’s not 
required that the model objects M1, ..., Ml are aligned.  
 
 
6 Implementation 

The implementation of the above described 
processing is quite trivial. The implemented algorithm 
is described next: 
1 – Given an image I, apply the algorithm developed 
in [14] to identify the objects present in the image. 
For each object found, construct the vector vG  with 
the locations of the image’s characteristic points and 
proceed as follows. 
2 – Translate vector vG so that its centroid is brought 
to the origin, obtaining the new vector 'vG . This is 
done by translating every point vi = (xi, yi) in vG as 
follows 

'

1

n
i

i i
i

vv v
n=

= −∑  

where n is the total number of points in vG . 
Normalize 'vG . 
3 – Let Ρ be the set of all prototypes and let Cl be the 
set of all classes. If P = ∅ , proceed to 7.1. 
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Fig. 1 – First and tenth view of the object House. 

 
 
4 – For each prototype Pj ∈ P determine the 
distance ( ) ( )ˆ , ' min , 'j jD P v D P v

π
π=

G G
, given by (7). 

5 – Let ( )arg min , 'j jD P v
π

π π=
G

 be the permutation 

that minimizes distance (7) for prototype Pj. 
Determine 

{ }
( )

{ }
( )

: :
ˆmin , ' min , '

j j
j j j

j j P P j j P P
d D P v D P vπ

∈ ∈ ∈ ∈
= =

G G
.  

6 – If d < ε 
6.1 –  For each prototype Pj ∈ P such that 
( )ˆ , 'jD P v ε<G

 

6.1.1 – Let M be the set of all models in the class 
represented by prototype Pj. Determine 

' min ' '
i

i j j jM M
d M P v vπ π+

∈
= −

G G
. 

6.1.2 – If d’ < ε’, let 

{ }: ' ' 'j i i j j jA M M M P v vπ π ε+= ∈ − <
G G

.  

6.1.2.1 – If d’ < ε’’, take 

[ ]{ }'
i j

j i M A
M M A M

∈
= − ∪ , where 

[ ]
i j

i M A
M

∈
represents the matrix of all the columns of 

all the matrices in Aj. 
6.1.2.2 – If ≥ ε’’, take 

{ }' '
i j

j i j M A
M M A M vπ

∈
 = − ∪  

G
, where 

'
i j

i j M A
M vπ

∈
  

G
represents the matrix of all the 

columns of all the matrices in Aj plus the new column 
'jvπ G . 

6.1.3 – If d’ ≥ ε’, take { }' 'jM M vπ= ∪
G

. 

6.1.4 – Make  ( ) ( ): , ', ''j jCl Cl P M P M= − ∪ , 

where Pj’ is the optimal prototype for set M’ and 

( )( ) 1

'' ' : 'i j i iM M P M M M
−+ = ∈ 

 
. 

7 – If d ≥ ε 
7.1 – The object in the image doesn’t belong to a 
known class. Therefore, add a new class to the model.  

Fig. 2 – Comparison of the object house with the 
prototype (match = 0.025148).  
 

Fig. 3 – Comparison of the object house with the 
model (match = 0.022491).  
 
This new class will have only one object, which will 
have only one view, 'vG . The new object will be used 
as the prototype for the new class: 

{ }( ): ,́ 'Cl Cl v v= ∪
G G

. 
 
Threshold ε’, in step 6.1.2, is the equivalent, for the 
models, to the threshold ε used in categorization. 
Threshold ε’’, in step 6.1.2.1, is used to restrict the 
inclusion of new views in the models. The new view 
is not included in the model unless it differs from the  
model’s aligned view by a value greater than ε’’. In 
all simulations here reported we took ε = 0.25, ε’ = 
0.15 e ε’’ = 0.01 (obviously, we should always have 
ε’’ ≤ ε’ ≤ ε). 
 
 
7 Results 
To test the system’s ability of recognizing the same 
object seen from different viewpoints, we presented it  

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15
-0.1

-0.05

0

0.05

0.1

0.15
239 correspondences, match = 0.022491

Model 
Object

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15
-0.1

-0.05

0

0.05

0.1

0.15
257 correspondences, match = 0.025148

Prototype
Object   
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Fig. 4 – Image of the dog’s 3D model. 

-0.15 -0.1 -0.05 0 0.05 0.1
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
290 correspondences, match = 0.38833

Prototype
Object   

 
Fig. 5 – Comparison of the dog’s image with the 
house prototype (match = 0.38833). 
 
a set of ten images of a 3D model of a house (figure 
1) obtained by successive rotations of 3.6º around the 
vertical axis. In this way, the first and last images 
presented were separated by a rotation in the 
horizontal plane of 36º. All the images were 
recognized as corresponding to the same object. The 
results obtained when comparing the tenth view with 
the prototype and the only model are shown in figures 
2 e 3, respectively. The match value shown in those 
figures is the value obtained for metrics (7) and, 
therefore, smaller values correspond to better 
matches. Note also that the figures are rotated relative 
to the model’s 2D image in figure 1. 
Next, we presented an image of a different object to 
see if the system would be able of distinguishing the 
two objects. This time we used a 3D model of a dog 
(figure 4). 
The results are shown in figure 5. The system was 
able to recognize it was in the presence of a new 
object. 
 
 
8 Discussion 
The results obtained, although in a very small 
number, are encouraging. Testing the validity of the 
proposed model will require defining a more 
demanding battery of tests. The model is very simple 
and attractive from the mathematical and 

computational perspectives. The threshold parameters 
used were chosen to produce the adequate results in 
the tests done and further research on the model will 
require carefully tuning of these parameters. 
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