
Development Tool for DSP Architectures

ALEXANDRU ONEA1 VASILE HORGA2 MARCEL RĂŢOI2

1Department of Automatic Control and Industrial Informatics
2Department of Electric Drives

"Gh. Asachi" Technical University of Iaşi
Bd. Mangeron. 53A, 6600 Iaşi

ROMANIA

Abstract: - This paper presents Windows-based application, designed in order to assist a control algorithms
developer in research and/or development activities. The application solves the main requirements needed in
such a work. A new approach in software development was followed in order to obtain flexible and reusable
DSP digital control applications. It was used a standard promoted by Texas Instruments that stimulates
software modularity strategy. Experimental results show an implementation example of a modular control
application using MSK243 DSP Motion Starter Kit. The software product can be used in educational process
and in research as well.

Key-Words: - graphic user interface, DSP, motion control, framework application, software module, debugging

1 Introduction
 Last years more and more applications were
developed on DSP. A field of interest for DSP
applications is motion control. A regulation concept
able to incorporate the AC machines as the drive
machine can only be achieved in an economically
manner on a digital basis. The use of
microelectronics in power control circuits enables
the implementation of complex control concepts
and allows the production of environmentally
acceptable, self-optimized motor drives with
applications ranging from computer peripherals,
robotics, and machine tools to railway drive, ship
propulsion, and rolling mills. Although with a
mature technology and the basic problems already
solved, controlled electric drives are still in the
intense development phase [1].
 Powerful and flexible, the DSP-based drive
controllers create the potential for significant
performance increase through the application of
advanced control concepts. In most cases the
embedded systems are endowed with minimum
peripherals for user interface (LCD, keypad),
thus ensuring fully autonomy to control systems.
These peripherals narrow the possibilities of
acquired data analysis and especially that of
results presentation. The trend is to ensure a
high flexibility for embedded systems, designing
open architectures that allow remote control [2].
Thus autonomous digital control system concept is
gradually replaced with an easily adaptable
evolutionary structural ensemble. This way appears a

migration from the producer-defined functionality to
the user-defined functionality.
 A new high-end a.c. drive provides closed loop
control of motor speed, which combined with
Windows-based configuration and hardware
modularity plug-in industrial networking, gives the
user the highest functionality. This solution
provides intuitive applications programming, using a
template approach with a library of function
blocks that can be parameterized and
interconnected easily using point-and-click
operations. Moreover, many drives come with a
suite of pre-programmed applications software for
such applications that can be controlled via a
rugged human-machine interface [3].
 This background led to the idea to design and
implement a software tool for behavior analysis of
DSP motion control systems. With an induction
motor electric drive stand and the Technosoft
MSK243 DSP Motion Starter Kit, the authors
widened the functionality of this ensemble
developing a high-level graphical user interface.
This application comprises both Windows interface
powerful facilities and essential features of a
software for motion control algorithms analyzing,
evaluation, developing, and debugging.

2 Design Principles and Software
Requirements
Digital Signal Processor (DSP) technology makes
digital control more practical and also offers a high

Proceedings of the 5th WSEAS/IASME Int. Conf. on SYSTEMS THEORY and SCIENTIFIC COMPUTATION, Malta, September 15-17, 2005 (pp283-288)

level of performance. Traditionally, cost has been a
potential disadvantage of the DSP solution, but this
aspect has diminished with the continuing decline of
DSP's costs. Floating point DSP’s are very
attractive for motion control system because their
computational power and accuracy higher than the
fixed point DSPs. For many applications in industry,
fixed-point solutions are still preferred.
 Texas Instruments (TI) developed a new
controller concept with the new powerful single-
chip motion controller family TMS320C24xx,
which integrates a 16-bit fixed-point DSP core with
intelligent peripherals to achieve a single chip
solution. The DSP controller architecture is
optimized for processing control signals.
 To use of the available computation power,
the designer is required to apply advanced level skills
for the design of the necessary software, that include
know-how in electric motors and drives, digital
control theory, real-time control implementation etc.
For a fixed point DSP, all quantities (data,
constants) are represented by integers in the [-
32768,32767] range. This means that each quantity
must be converted to fit within this range. Special
techniques, such as Q15 representation, are used to
meet these requirements. The software development
process is longer and difficult. Furthermore an
important part of the solution must be written in
assembly language to perform Q15 operations and
increased execution speed. Thus the high
complexity of Digital Motion Control (DMC)
application requires high trained and experimented
specialists. This makes the development process a
non-trivial one and its complexity is high.
 While in traditionally approach the software
application is fully developed at programmer
location, in modem approach of components-based
type, only the software components are developed
at headquarters; the components integration in an
application framework is done in the field by system
integrator. The software component is defined as a
composition unity with well-defined interface by an
agreement and this has explicitly presented all the
context dependencies. Software components can be
independently installed each other and may be
aggregated with third party [5]. To obtain a software
component three steps must cover: component
specification, component production, and
component integration into a framework application.
 The component specification is considered as
industrial standard. Only this stage involves certain
coordination of efforts in order to introduce and to
impose standards for software components on the
market. Based on these public specifications each
independent producer of software components can

develops his own component. The integration of
components in applications frameworks is the last
stage of this succession. This stage means even
final goal of components existence - application
development in industrial manner. The software
integrator must identify needed components and
then purchases them from the market. The
integration of components into an application is
realized by means of application development
framework, which represents a prefab assembling
of components.
 TI recognizes that such methodologies need also
be applied to high performance DSP systems [6].
TI is promoting a new Algorithm standard called
XDAIS (eXpress DSP Algorithm Interface
Standard), to be used as backbone. XDAIS focuses
on a set of general rules and guidelines that can be
applied to DSP algorithms, and, if followed, allow
system integrators to quickly assemble production-
quality systems from one or more algorithms.
 Many modern DSP systems architectures can be
partitioned along the line depicted in Fig.l [6].

 Algorithms are "pure" data transducers; i.e.,
they simply take input data buffers and produce
some number of output data buffer. The framework
is the "glue" that integrates the algorithms with the
real-time data sources and sinks using the core run-
time support, to create a complete DSP subsystem.
An algorithm is compliant with XDAIS if the
algorithm writer follows a set of general rules,
some of them presented below:
 - all algorithms must follow the run-time
convention TI implementation of the C
programming language (C - callable). This ensures
that the system integrator is free to use the C
language to "bind" various algorithms together, and
to control the flow of data between algorithms.
 - all algorithms must be reentrant within a
preemptive system.
 - all algorithms data references must be fully
relocable. That is, there must be no "hard coded"
data memory locations.
 - all algorithms code must be no "hard coded"
program memory locations.

Framework

Core run time support

Cmd
Algorithm

Status

Algorithm

Algorithm

Fig.1. DSP software architecture

Proceedings of the 5th WSEAS/IASME Int. Conf. on SYSTEMS THEORY and SCIENTIFIC COMPUTATION, Malta, September 15-17, 2005 (pp283-288)

 - algorithms must never directly access any
peripheral device. This is the responsibility of the
client or framework.
 All standard-compliant algorithm implementations
must be modules, which manage instance objects.
Objects simple encapsulate the persistent state that is
manipulated by the other functions or methods
provided by the module. A module manages only
one type of object. Thus, a module that manages
objects roughly corresponds to a C++ class that
follows a standard convention for its configuration
parameters, interface header, and all external
identifiers. This is a way to get the benefits
associated with object-oriented and component-
based programming. Since all modules have a very
clear interface and are self-contained, it is then
simple to connect modules together and make
them interact in a system. Thus systems typically
consist in a "top level" framework with many
function calls to various modules.
 Embedded DSP systems are sensitive to small
memory spaces and critical execution times. A
combination of full "C" and C-callable assembly
(CcA) functions is recommended. At the system
level or framework, full "C" ensures maximum
clarity, flexibility, and maintainability. At the
module level, CcA functions allow memory and
cycle efficient code to be developed with all the
desired attributes expected from a "C" function, i.e.
to be reentrant, preemptive, relocable, instanced
multiple times etc.

3 A Design Example for Motion
Control - Direct Torque Control
Method
High efficiency control and estimation techniques for
asynchronous motors found more application fields
with Blaschke's well-known Field-Oriented
Control (FOC) created in 1971. It was an intensive
work to improve the dynamic response and reduce
the complexity of FOC methods. One method is the
Direct Torque Control (DTC) method developed by
Takahashi in 1984 and has get increased attention
due to the improved dynamic performance and
simplified control strategy that it offers. More
detailed information can be found in [7],[8].
 The DTC method involves direct control of the
appropriate/optimum switching modes and keeps the
flux and torque errors within a prefixed band limit.
The errors are defined as differences between the
reference and measured/estimated values of flux
and torque. DTC techniques require the use of
hysterezis band controllers instead of flux and

torque controllers. To replace the coordinate
transformations of FOC, DTC use look-up table to
carry out the switching procedure based on the
inverter states. However, its extreme simplicity is
counterbalanced by some inconveniences: torque
ripple is typically higher and the inverter switching
frequency is variable as a function of load torque
and rotor speed.

To ensure a proper voltage selection by the DTC
controller, the estimation of stator flux must be
accurate. The calculation of the electromagnetic
torque depends on the stator flux estimation
accuracy too. Stator flux and torque estimations are
based on the asynchronous machine dynamic
equations in the stationary stator reference frame.

Fig.2 shows the speed DTC system. The speed
controller in the diagram is a PI controller. The
development of the sector selector and the switching
table is based on Takahashi's study.

Fig.2. Speed sensored DTC system

3.1. Speed DTC Implementation using eXpress
DSP Standard Concepts
In order to digitally implement the control structure
shown in Fig.2 the authors have used the DSP -
Motion Starter Kit -MSK243 [9]. The digital signal
processing algorithms represent implementations
of mathematical functions, which process "pure"
data. This matter requires that the interaction with
input/output information do not be directly achieved
by means of hardware peripherals of DSP digital
system but by means of associated software
drivers. On the other hand, peripherals drivers are
software components specific to available
hardware resources and, therefore, together with
services offered by framework make up the minimal
core for any digital control structure of electric drive
system.
 As application structure, the configuration can
be presented like a hierarchical multilayer functional
structure (Fig.3):

Flux reference

Speed controller

Flux controller

Torque controller

Sector selector
Rotor flux
estimator

Stator flux
estimator

Torque estimator

Look up table

Clark transform

Digital Motor Control

 Speed
reference

2
3

Flux modul
 estimator

SVPWM_DRV

ADC_DRV

SPEED_DRV

RECTIFIER

INVERTER

AsM

ENCODER

22 YX +

Proceedings of the 5th WSEAS/IASME Int. Conf. on SYSTEMS THEORY and SCIENTIFIC COMPUTATION, Malta, September 15-17, 2005 (pp283-288)

Configuring,
monitoring and
remote control

system

Electric drive system

QEP
Circuit

AD
Converter

Compare
& PWM
Circuit

GPT1
Timer

GPT2
Counter

SCI
interface

Monitor
Program

PWM Modulator
Driver

ADC
Driver

QEP Circuit Driver
SPEED_DRV

read_char();write_char() setSVPWM (); getSignals(); getSpeed();

Interrupts

Lo
gi

ca
l l

ay
er

C

on
tro

l s
pa

ce

Ω
[p

u]

i a i b i c u c
c Sabc

C
H

C
H

main()
{
.........
}

FirstHalfISR()
{
..............
...............
}

SecondHalfISR()
{
..............
...............
}

Ph
ys

ic
al

 la
ye

r

 - physical interface layer;
 - logical interface layer;
 - digital signal processing algorithms layer.
 At the physical interface layer level the
application use the embedded hardware resources
of DSP controller:
 - serial communication interface - SCI;
 - analog to digital converter - ADC;
 - quadrature encoder pulse interface - QEP;
 - PWM generator unit;
 - general purpose timer/counter circuits - GPTx:
 - hardware interrupts system.
 The next layer, of logical interface, implements
the data exchange with external environment. This
exchange is made by means of some data transfer
functions and memory buffers for reading/writing
obtained data.

Fig.3. Hierarchical multilayer functional structure of

DMC applications

 The last hierarchical layer, of digitally
processing mathematical functions, performs
proper processing of information and supplying
adequate command in order to reach established
control objectives.
 Using this minimal kernel to implement control
structures, the system integrator can aggregate in
control space different software modules, which
are standardized as interface and independently
functional. The system framework is implemented in
C programming language.
 The implementation of elementary algorithms,
typical for blocks presented in Fig.2, was realized
with modules, defined according to XDAIS. The
general structure of a module is presented in Fig.4.

Fig.4. The general structure of a software module

 Using own initializing function for settling
p1,p2…….pk .parameters, each module can be
adapted/configured for suitable requirements of the
used electric drive system. The o1,o2,...om output
values are calculated on the basis of input
quantities, transferred by application framework,
and of specific parameters. For the reason of speed
execution and space memory requirements
optimization the output evaluation functions were
implemented using DSP assembly language.
Moreover, to obtain maximum accuracy of
information representation both input/output
quantities and parameters have adequate
representation format, in Q8-Q15 range.

3.2 Graphical User Interface Design Subsection
A well-designed graphical user interface is
developed on the basis of some principles and
development process that take into account the user
and his/her actions. A well-designed graphical
user interface ensures a consistent and intelligible
development environment and can influence the
user devotion for that product.

In order that a graphical user interface to be user-
friendly any programmer has to comply with a lot of
principles that confer versatile features to it. The
requirements to which a graphical user interface
must respond are [10],[11]:
• Application control by the user. The first and
very important requirement is that the interface have
to be realized in such a way that the user feel the
actions of the application are controlled by
himself and not vice versa. The user must have
also the possibility to personalize some interface
aspects varying with his/her preferences.
• Consistency. The consistency allows user to
transfer their knowledge to new processes, and to
rapidly learn them. Any new application must
respect the standard that the Windows operating
system requires.
• Association of "retorts" for application
actions. It is recommended that the interface
transmit a "retort" for each user action. It impose
that the application confirms, visual or audio,
that it assumed user request and it is executing.
• Aesthetics. Another important part of interface is
visual elements design. Visual attributes furnish
valuable data and communicate important
information relatively to interaction behavior of
some particular objects.
• Simplicity. An interface must be simple, easily
to learn and easily to manipulate. It must allow the
access at all functionalities offered by an
application. Maximum functionality of an

p1 p2 pk

i1
i2
in

o1
o2
om

Software
module

Proceedings of the 5th WSEAS/IASME Int. Conf. on SYSTEMS THEORY and SCIENTIFIC COMPUTATION, Malta, September 15-17, 2005 (pp283-288)

application and creation of a simple interface are
two conflicting goals but they can be balanced
through a good design. A good interface will
present the information in a hierarchical manner.
When menus are designed, there are not
recommended too many submenu levels because
the user is constrained to memorize many commands
to access a certain option. Usually, for frequent
commands buttons are associated to access the
commands as simple as possible.

3.3. DSPGraphs - a Tool for Behaviour
Analysis of DSP Motion Control Systems
The Visual C++ rapid application development tool
was used to implement this graphical environment.
 DSPGraphs - a sovereign application - does not
implement all the functions of a standard integrated
developing environment. When a COFF object file is
obtained DSP standard tools are used. When
binaries are obtained, the interface can be used to
transfer them into target system memory, to
remote start/stop the control application, to
analyze different control structure quantities etc.
Thus all specific variables of current project (path,
COFF file name, analyzed quantities, interface
configuration etc) are saved in a project file with
gph extension; these files are used whenever
workspace must be recovered. The File menu
comprises all standard options of a Windows based
application (New, Open, Save, Save as, Exit etc).
 Once the control application included in
project (the file with out extension) the user has the
possibility to configure the client window with four
displays, each of them with maximum four studied
variables. Fig.5 presents a graphical analyzing
example of variables tracks belonging to a DTC
structure presented in Fig.2.

Fig.5. A graphical analysis example – DTC structure
implemented on MSK243 DSP Motion Starter KIT

 The user must select them opening a dialog
box like that presented in Fig.6. For each selected
variable the user must introduce the scale factor,
which take into account Qx representation format,
gain sensor, and used measure units.

Fig.6.The dialog box for variable selection

 In the next step the user can distribute selected
variables into interface displays. All commands for
variables selection, variable distribution, color,
width, and style plots setting, displays arrangement
etc are grouped in Configurations menu.
 By means of Control menu options the user
achieves the remote control of the DSP board. This
way the user can transfer the control application
in DSP data/program memory, to start the
application with/without acquiring selected
variables, to acquire the selected variables during
the application running, to stop the application or
to upload the acquired variables in order to be
presented and analyzed.
 If as a result of the electric drive system analysis
and user evaluation concludes that the behavior is
not the predicted/desired one, he/she can analyze
more carefully the software structures that granulate
the DSP application. The structures inspector from
the Debug menu allows to get and/or to set the
structures members values for structures used in
control algorithm. The structures are based on
reusable and flexible modules concept as in
Fig.4.
 The example presented in Fig.7 shows the
evaluation modality of proportional coefficient ki
belonging to PI speed controller structure.
 For drawing experimental date DSPGraphs
application enables for selected display the exports
of EMF Windows image file format. Fig.8 presents a
screen capture with the menu for export options.
The EMF image file resulted from this operation is
shown in Fig.9.

If somone wants other type of numerical analysis

Proceedings of the 5th WSEAS/IASME Int. Conf. on SYSTEMS THEORY and SCIENTIFIC COMPUTATION, Malta, September 15-17, 2005 (pp283-288)

DSPGraphs saves all the acquired variables in ASCII
type file, compatible with MATLAB m-file format.

Fig.7. An example of members’ structure evaluation

Fig.8. Export options of EMF Windows image file

format

1.8 3.6 5.4 7.2 9. x1e2

2.8

1.4

0.

-1.4

-2.8

x1e-1 Stator Flux Estimation

time [msx10]

W
b

fisd_est fisq_est

Fig.9. The EMF obtained from Fig.9, the 4th display

4 Conclusions
The DSP is a solution for hard real-time control
problems, but the software tools are rather poor and
an integrated software development platform is not
available for most of DSP.

 The software development environment
presented in this paper solves the integration
problem on a DSP platform, create an user-friendly
programming environment on a PC platform which
allows tracking of on-line variables, displays
off- line and stores the program variables, solves the
communication aspects while an application runs on
DSP, and is an open system for further
development.
 An application framework for MSK243 Motion
Starter Kit was presented. An example of a modular
application was implemented with easy configurable
and reusable software modules.
 With the communication functions available in
accompanying MSK243 Motion Starter Kit library and
the debugging facilities offered by firmware monitor
the authors designed and implemented a graphical tool
for analyzing, evaluation and debugging of electric
drives digital motion control applications. The
graphical user interface offers features for a user
concerned in DSP motion control. The developed
software has the advantages of an open system that
allows the new functionalities addition.

References:
[1] Vukosavic S., Controlled Electrical Drives -

Status of Technology, Zbornik XLII Konf.
ETRAN-a, Vrnjacka Banja, Sveska, 1998.

[2] Stefanescu C., Cupcea N., Measurement and
Control Intelligent Systems (in Romanian),
Editura Albastra, Cluj-Napoca, 2002.

[3] Kreindler L., DSP Solutions for Digital
Motion Control, Journal of Electrical
Engineering,Vol.2, 2002, pp. 13-22.

[4] De Carli A., Motion Control: An Emergent
Technology,12th World Congress IFAC, Sydney,
Australia, 1993, pp.423-426.

[5] Pârv B., Software Components. PC Report (in
Romanian), 1998, No.69.

[6] ***, A Software Modularity Strategy for
Digital Control Systems, TI, 2000.

[7] Vas P., Sensorless Vector and Direct
Torque Control, Oxford Univ. Press, 1998.

[8] Răţoi M., Horga V., Albu M., Diaconescu
M.P., A DSP Implementation of DTC
Method for an Induction Motor, 3rd Int.
Conf. on Electrical and Power Engineering,
Iaşi, Romania, 2004, pp.1077-1084.

[9] ***, MSK243 – DSP Motion Starter Kit,
Technosoft, 2001.

[10] Cooper A., About Interface. The Essentials
of User Interface Design, IDG Books, 1995.

[11] Suciu D.M., Graphic User Interface Design
Principles, PC Report (in Romanian), 1996,
No.51.

Proceedings of the 5th WSEAS/IASME Int. Conf. on SYSTEMS THEORY and SCIENTIFIC COMPUTATION, Malta, September 15-17, 2005 (pp283-288)

