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Abstract: - We present a new approach to image interpolation using consistent relationships between adjacent 
pixels in an image. In the first stage, the localized relationships are learned from the input image. In the second 
stage, the relationships and the concluded governing rules are used to build an interpolated image. Our method 
is compared with other interpolation methods such as bilinear, bi-cubic and spline for enlargement of images 
by multiplications of 2. The results indicate significant reduction in the blockiness and smoothing effects 
compared to existing methods. We present additional results for related applications of audio signals and for 
color imaging. 
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1 Introduction 
Image interpolation is of interest in many 
applications of image transmission and display. 
Several known methods exist for the implementation 
of these imaging systems. One basic approach is 
viewing the sampling and the interpolation scheme 
as projection onto a representative space, usually 
built from splines [1],[2]. Another approach is to 
solve partial differential equations to assess the 
missing information [3].  
In this paper we propose and develop a new 
approach to this basic task, exploiting the high 
correlation between adjacent pixels.  
 
1.1  Motivation 
For a given square image, we can see a relation 
between its high-resolution version Ib of size 
2Mx2M and its lower resolution version Is with size 
MxM. If we consider the size reduction in a 
straightforward manner, the pixels of Is are 
contained in Ib, or more specifically, if k and l are 
the row and column indexes of the image 
respectively, then ( ) ( )2 1,2 1 ,b sI k l I k l− − = . 
Obviously, Ib contains additional 3M2 more pixels 
compared to Is (Figs. 1 and 2), however, although Is 
has only a quarter of the pixels in Ib, we can still see 
the resemblance of their histograms (Fig.3).  
Other motivating results are those of the JPEG 
Lossless algorithm [4] that show that the average 
compression ratio is less than half of the original 
image without loss of information. Turning to the 

standard version of JPEG, a compression ratio of 4 
can be obtained with minimal loss of information, 
namely, maximal change of 3 gray levels for each 
pixel. Observing those results, it is clear that major 
information of the image is contained in Is. 
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Fig.1: The original image (input). 
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Fig.2: The larger image. The gray 
pixels represent the original data from 

Fig. 1. 
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2 Image Sub Regions 
It is a widely accepted observation that images’ 
structure can be modeled by a Markov process [5]. 
This model predicts a gray level value of a pixel by 
a weighted sum of its neighbors and additive noise. 
Moreover, in image reconstruction the simplest, yet 
acceptable, way to enlarge an image is by bilinear 
interpolation, i.e., each missing pixel is predicted by 
the average of its four surrounding neighbors, and 
Bi-Cubic interpolation uses sixteen neighbors,  both 
are also a weighted sum. 

 
 

Fig.3: Lena normalized histograms of 
size (512x512) – dashed, and of size 

(256x256) – solid. 
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Fig. 4: An unknown pixel p, and its known neighbors of 
type “x” and “+”. 

 
According to the structure in Fig. 2 we separate the 
missing pixels in the larger image into two types: 
“x” pixels are the ones that have 4 known neighbors 
in each diagonal corner, and the “+” type pixels 
which have only two known neighbors in the 
horizontal edge or in the vertical edges of the image 
(Fig.4). Our goal is to predict the missing pixels by 
the most fitting weighted sum of their neighbors, 
i.e., 

( )1i i
i

p nα= ∑%  

where p%  is the reconstructed pixel, ni are its 
neighbors and αi are the weighted coefficients. 
To construct a robust model of an image we must 
consider the regions characteristics such as edges 
and smooth areas, this will involve changes in the 
pixels’ gray levels. E.g., in case of a horizontal edge, 

 will be greater than  and , similarly, 

if there is a vertical edge one gets  and 

, similar relationships will hold for the 
“+”neighbors. Quantitatively, the sharper the edge, 
the higher the variance of the neighbors’ values. 
Diagonal edges are also considered to complete the 
model. For each region, the predicted value is a 
weighted sum with a different weight for each 
neighbor, depending on their relationships. If we 
limit ourselves to the 4 surrounding neighbors, there 
will be 4!=24 permutations, i.e., 
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As a sequel in each permutation there will be 
different coefficients in the weighted sum: 

( )
4

x x x

1
2i i

i
p nα

=

= ∑  

Similar observation is valid for the “+” neighbors, 
where the prediction is: 

( )
4

1
3i i

i
p nα+ + +

=

= ∑  

Our assumption is that the coefficients αi which 
model the small image will hold for the larger image 
too, thus can be used to estimate the missing pixels. 
 
 
3   The Proposed Algorithm 
Our algorithm is based on three major parts. First 
the governing rules of the data are studied and 
analyzed from the input image for the two types of 
pixels.  
The output image is built in two steps. In the first 
step M2 pixels are reconstructed, whereas the third 
part, which is based on the second, reconstructs the 
additional 2M2 pixels. The detailed algorithm is as 
follows. 
   

 The algorithm first scans the input image.  The  
type of each pixel is determined to be “x” or “+”. 
For each permutation we save the four x-neighbors 
and the matching pixel in a two-dimensional array, 
which we call Value Metric of the x-type (VMx). 
Since we want to model only the regions with 
significant changes in gray levels, we also add the 
constraint that the variance of the neighbors will be 
greater than a predefined reference value, i.e., 

{ }4x

1i i
V Var n δ

=
= ≥ .  

2. During the scanning process, we also save the  
four “+” neighbors and the matching pixel in a 
different array VM+ with similar separation to 24 
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permutations, depending on their relations, and the 
same constraint of variance is used. 
3. For each permutation, we find the coefficients   
in  the weighted sum (2). We build those equations 
from VMx. As a consequence, there are 24·4=96 
missing variables, however, the number of equations 
is the number of pixels in the input image without 
the pixels in the 4 sides of the image, i.e., M2-4M, 
and without the smooth areas pixels ( )V δ< , so 
theoretically for an image with M>>12 which is 
mainly the case of interest, there is a solution for 
those equations, however, a further constraint is 
necessary to solve the problem. 
Let us denote j to be the permutation index (j=1..24), 
and Q to be the total number of occurrence in the 
permutation j. Thus, for the permutation j, we can 
write Equation (2) Q times: 
 

( )

1 11 12 13 14 1

2 21 22 23 24 2

3
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where the indexes x and j were dropped to simplify 
the expression. Or equivalently in matrices form:  

( )x 5⋅P = n α  
In our case of interest the input images have M>>12 
thus, for each permutation we will have 4 missing 
variables and additional more equations. Since such 
a problem does not necessarily have a unique 
solution, the least square solution could be helpful: 

( )
1 x 6T T−

 =  α n n n P  

 
This will produce the 24 vectors of the x-pixels 

coefficients - { }24

1j=

x
jα . 

A few remarks on this solution: 
•  Due to the inverse operation we must ensure that 

Tn n  will have no zeros rows or/and columns. To 

satisfy this condition a simple preprocessing step 
can be performed: If the minimum value of the 
input is zero (non-negative images) we add the 
value 1 to the whole image, which can be subtracted 
from the output at the end. Since Tn n  is built 

from the input pixels, it will be invertible. 
•  The least square method will produce a solution 
that is more immune to noise and to side effects. 
Therefore it is desired that the number of equations 
in (4) will be significantly higher than four, or 

equivalently that the number of pixels in the input 
image will be significantly greater than 122. 
 
4.  For the “+” type pixels we use the same 
technique with VM+ to solve (3), which will yield 

the 24 vectors of coefficients - { }24

1j=

+
jα  

5. After the coefficients for the x-pixels { }24

1j=

x
jα   

are found, we use them to reconstruct the x-pixels in 
the enlarged image. This is done by scanning the 
sparse image and for each x-pixel we find its 
matching permutation j from its known neighbors’ 
relations, and calculate its prediction value using 
Equation (2). Here, we include another permutation 
for smooth areas ( )V δ< , in which the reconstruct 
value is the simple average of its neighbors: 

4
x

1
0.25 i

i
p n

=

= ⋅∑ . 

6. This step is based on the previous one, the input  
image is Ix and its structure is as shown in Fig.5. For 
each “+” pixel we find its matching permutation 
from its known neighbors, calculate its value from 
(3), and for cases where V δ<  we use a simple 
average.  Notice that for each “+” pixel only two of 
its neighbors were present in the input image and the 
other two were reconstructed in Step 5. 
7. Presently we have the output image of size  
2Mx2M (its structure is shown in Fig.6). If we have 
added 1 to the input we can subtract it now, although 
the visible effect can be ignored. Finally to complete 
the sides of the output image, a simple average of 
the surrounding pixels is used. 
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Fig.5: The image Ix after Step 5 of the 
algorithm. 

 
The algorithm can be generalized to arbitrary sized 
images. In such cases the input image size is M1xM2 
and the output will be 2M1x2M2. 
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The value 5δ =  was chosen to yield the best 
results. As can be seen, significant improvement can 
be observed in the blockiness and smoothness of the 
proposed approach verses other interpolation 
methods. 
 
 
5 Additional Applications 
The algorithm can be used for interpolation of one 
dimension signals where the coefficients are learned 
from the four neighbors of the input. An example is 
shown in Fig. 13 for voice signal, where the original 
even samples of the signal were replaced with zeros 
and the coefficient were learned from the odd 
samples  (the input), i.e., for the sample oddI ( )oddI t , 

 

Fig.6: The structure of the output image after Step 6 of 
the algorithm. 

 
To enlarge an image by a factor greater than 2 we 
use the algorithm iteratively, until we reach the 
desired size. Another generalization is interpolation 
of color images, where each color component can be 
treated as an individual gray level image. 

 
the four neighbors are ( )1oddI t − , ( )2oddI t − , 

( )1oddI t + , ( )2oddI t + , where t is the samples 
index. 

 
4 Experiments 

 First we show the resembling values of the x-kind 

coefficients{ }24

1j=

x
jα  in the large and small image for 

Lena with size 512x512 and its reduced version of 
size 256x256. This will correlate with our basic 
assumption in Section 2. In each image there are 24 
coefficients vectors, each vector has 4 elements. Fig. 
7 shows the results: at top left the first elements of 
the 24 vectors are shown, top right depicts the 
second elements; bottom left is for the third 
elements and bottom right for the fourth elements. 

For CCD images with Bayer pattern [6], the input 
has three components, each is a sparse image, the 
red and blue component has the structure of Fig.2 
and the green component has the structure of Fig.5. 
The relations can be learned from each color and the 
suggested method can be used to reconstruct the 
missing pixels (Fig.14). 

 
 

6 Conclusions 
We have presented a new approach to image 
interpolation based on the high correlation between 
adjacent pixels. A step-by-step algorithm has been 
formulated to achieve an enlarged image of 4 times 
the input data. The results indicate a significant 
improvement over existing methods in side effects 
like smoothness and blockiness. Our method can be 
also applied to one dimension (voice) and multi-
dimensions (CCD images) signals with very good 
results. Our conclusion is that the new approach and 
algorithm could be helpful in most applications of 
signal interpolation. 

 

  
 
 
  

Fig.7: The coefficients values.  
Larger image – black disks, Small image – empty circles.  

  
We compared the proposed algorithm with bilinear , 
Bi-Cubic and Bi-Cubic Spline interpolations on a set 
of images with input size 128x128 and the resulting 
output size is 256x256 (Figs. 8-12). 
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Fig.11: Bi-Cubic Spline interpolation. Fig.8: The input image. 

  
Fig.9: Bilinear interpolation. Fig.12: Output of the proposed approach. 

 

 

 
 

Fig.13: FFT of the word ‘Diskette’ (size 4225) Original 
and reconstructed versions. 

Fig.10: Bi-Cubic interpolation. 
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Fig.14:  CCD reconstruction for the image ‘Lily’ with 
size 186x230. Top: bilinear interpolation; Bottom: the 
new approach.  
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