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Abstract: - The paper presents a solution of self-tuning control applied to a chopper-driven motor system. On 
that purpose the mathematical model of the plant is firstly delivered. It was preferred an on-line system 
parameters estimation based on continuous time model. The adaptive and self-tuning algorithms were 
implemented on a floating-point DSP. 
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1   Introduction 
Many adjustable speed drive applications require 
medium or high bandwidth torque control in order to 
obtain adequate control performances. It means that 
a drive system will be able to perform the desired 
motion control operation if it can operate as a 
controllable source of torque. 
     Without torque control, the dynamic performance 
of a drive is at best slow and oscillatory, and in the 
worst case unstable. High performance control of 
electric drives requires the accurate models of the 
motor and mechanical load.  
     Self-commissioning greatly improves the drive 
tuning and performance, but its effects are consistent 
only if the motor remains inside the tuning range. 
Some system damages can be unpredictable and 
ordinary closed-loop systems may not respond 
properly when the system transfer function varies. 
The adaptive control helps to deliver both stability 
and good response. 
     The self-tuning regulators contain an inner 
control loop and an outer adaptation loop. The inner 
control loop acts on the plant in the conventional 
way. The outer loop adjusts the inner loop controller 
parameters. The outer loop consists in a recursive 
parameter estimator combined with a control design 
algorithm. A self-tuning regulator assumes a linear 
model for the controlled process. The estimated 
values of the plant parameters are used in a control 
law design algorithm. This one sends the new 
controller coefficients to the controller of the inner 
loop. 
     The paper describes a DSP-based on-line 

adaptive and self-tuning control method for an 
adjustable speed drive system. This system consists 
in a chopper and a DC motor. The main objective of 
this paper is to present an automated methodology 
for the estimation of electrical and mechanical 
parameters of the drive system that are used to tune 
the controllers of the ordinary control loops. 
 
 

2   Mathematical Model of Adjustable 
Speed Drive of a Chopper-Driven DC 
Motor 
A separately excited DC motor drive was used. 
Excitation flux is assumed to be constant and equal 
to rated value all time. Then the motor can be 
represented as a system of two first order differential 
equations: 
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where: La, Ra-inductance/resistance of the armature 
circuit, K-counter electromotive force and torque 
constant, J-inertia of the system, D-viscous friction 
coefficient, ia-armature circuit current, va-armature 
circuit voltage, Ω-motor speed, tL-load torque. 
     The conventional control structure of a separately 
excited DC motor is the classical cascade control. 
Conventional constant parameter PI controllers are 
used for armature current and speed control. The PI 
controller for current is designed using modular 
optimum criterion and the PI controller for speed is 
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designed using improved symmetrical optimum 
criterion [1]. The output of the speed controller is 
limited and an anti-windup system is included to 
reduce the current overshoot that may result due to 
integrator saturation. 
     From the modular optimum criterion the 
parameters values of the current controller are: 

fiielii

a

a
ela1

iTia

ael
Ri

TTTTT

;
R
L

T;LC
TKK2

RT
K

+==

===

µΣ

Σ   (2) 

where: Tel-electrical time constant, Tµ-dead-time 
caused by the chopper, Tfi-time constant of the filter 
inserted for the measured current, Ka-gain of the 
chopper, KTi-constant of the current transducer. 
     The symmetrical optimum criterion gives the 
following parameters for the speed controller: 
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where KTΩ is the constant of the speed transducer 
and TfΩ-time constant of the measured speed filter. 
     With an adequate sampling period, the 
continuous control laws of the conventional 
structure are approximated with discrete control 
laws and implemented on a floating-point DSP 
system. 
 
 

3. On-line System Parameters 
Estimation Based on Discrete Model 
As result of the fast development in automation 
technology the demand for drives increases. An 
important problem in drive systems is controller 
tuning prior to system operation. Drives controller 
tuning is needed to ensure that the drive system will 
meet the system performance requirements. Drive 
commissioning is the tuning of system parameters 
before it operates. During this process, different test 
are applied to calibrate the drive controller. 
     Self-commissioning is the automation of the 
commissioning process. One of the benefits of self-
commissioning is that it facilitates system 
installation and ensures proper drive tuning before 
the system is fully operational. That means 
significant improvements in reliability of drive 
system by increasing the intelligence of the control 
systems. 

Parameter estimation is necessary for proper 
tuning of the controllers. The physical parameters of 
the system should be accurately estimated. The 
Recursive Least Squares (RLS) algorithm allows 

computation of the unknown coefficients of a set of 
linear difference equations.  

If the difference equation describing the process 
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is put into linear regression form as 
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then the equations to be solved every sampling 
interval are: 
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With RLS being an algorithm for the recursive 
solution of a system of linear equations, the process 
to be identified has to be transformed into a model 
of difference equation. 

Time series analysis, ARMA (z-transform) 
estimation using least squared error coefficient 
fitting, has been used for decade to numerically 
identify system model in the discrete time domain 
[2]. With input and output signals sampled at equal 
time intervals and a linear model structure relating 
the two sets of signals, coefficients of the discrete 
model can be found using this technique. From these 
coefficients, the physical parameters of the system 
can be calculated in order to update the parameters 
of the used controllers. Unfortunately, little attention 
has been paid to the accuracy of the estimated 
physical parameters resulting from this identification 
procedure. 

In the case of discrete models there are a number 
of difficulties related to the used discretzation 
method such as possible multiple local minima. 
Furthermore, a precise estimation of the discrete 
model parameters does not guarantee that the correct 
continuous model parameters will be recovered [3]. 
The sampling time for these identification technique 
has to be carefully chosen. Operating with too large 
sampling intervals dominant poles or zeros may be 
neglected or the resonant frequency may not be 
sensed.  

It is widely known that the sample rate must be 
fast enough to avoid aliasing. A common 
misconception is that the best identification results 
can be obtained by sampling as fast as the hardware 
will allow. Such high sample rates actually cause 
errors and are unsuitable. Choosing a sampling 
interval which is too small numerical problems may 
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arise. 
In the continuous time domain a stable root can 

fall anywhere in the left half of the s-plane. This 
infinite region corresponds to a unit circle in the z-
plane. Because an infinite area is condensed into the 
finite and small area of a unit circle, there are 
regions of the z-plane where the discrete time root is 
insensitive to the continuous time root [2],[4]. These 
regions of the discrete time domain should be 
avoided. Given fixed dynamics, the only way to 
avoid these regions is with a proper selection of the 
sample rate. 

On the other hand, in order to guarantee fast 
reaction of the controllers, especially in case of 
disturbances, the goal is to choose the sampling time 
of the controllers to be as small as possible, thus 
gaining nearly continuous performance. Therefore 
with the sampling time for the controller different 
from the one for estimation, the plant model has to 
be transformed at least from one sampling time to 
another. Besides the z-transform of the plant may 
have non-minimum phase zeros, which have no 
equivalent in the continuous s-plane, and which may 
cause problems while computing an appropriate 
controller. 

All these emphasized problems may be avoided 
if the recursive estimator is based on continuous 
models of the plant. 

 
 

4 On-line System Parameters 
Estimation based on Continuous Time 
Model 
Parameter estimation of continuous time systems is 
not a new subject. In the old days, when computers 
were not around, the continuous time perspective 
was dominating. Research on the subject of 
continuous estimation has not been intense until 
lately, but has instead been slowly going on since 
the nineteen fifties [5]. 

A continuous time model is more appropriate 
than a discrete one. The estimation methods on 
continuous time model offer the following 
advantages: 

- an easier use of the obtained model by the 
supervision level in adaptive systems; 

- the change of the sample rate of the control 
system, which is usually different from the sampling 
rate used for the estimation; 

- the possibility to embed a priori knowledge 
about partially known process in terms of poles, 
zeros or physical quantities. 

Consider the task of estimating an ARMA 
system modeled by the linear differential equation: 
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One way of determining the unknown 
coefficients ai’s  and bj ‘s is to observe the input u(t) 
and the output y(t), create the derivative terms 
artificially, substitute them into regression equation 
(10) that can be used by RLS estimator. 
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The drawback of this fairly straightforward 
approach is the difficulty of obtaining the 
derivatives of the input and the output which in 
practice inevitably contain noise. Algorithms 
involving direct generation of the time derivatives of 
signals either physically or by computing remain 
satisfactory for the high signal to noise ratio. 

The fact that differentiation is an intrinsically 
noise accentuating operation motivated many 
researchers in the early nineteen sixties to devise 
methods that are noise resistant. The solution is to 
perform Linear Dynamical Operation (LDO) in both 
terms of equation (9) and transform the differential 
equation for the continuous time system into a 
system of algebraic equations. 

The PMF can be interpreted as a technical 
application of the Shinbrot modulating function 
method [6]. The principle of the PMF consists of 
converting a continuous time signal z(t) over the 
time interval [0,t0] into a real number Z(t), called 
moment of the signal z(t). 

Let’s define the Gamma kernel as [7]: 
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     The Gamma kernel refers to the implementation 
of a generalized delay operator. The Laplace 
transform of the kernels is given as: 

)s(G
s

)s(G n
n

n =⎟
⎠
⎞

⎜
⎝
⎛

λ+
λ

=                (14) 

where 

{ }
λ+

λ
=λ=

s
)t,(gL)s(G 1               (15) 

Equation (14) suggests a practical 
implementation for the kernels, in the form of a 
cascade of identical first order low pass filters. This 
structure is called the Gamma filter. The impulse 
response of the filter from the input to the kth tap is 
given by )t,(gk λ . The time scale λ is responsible 
for setting the position of the pole s=-λ . 
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The convolution integrals can be viewed as the 
outputs of various stages of a set of filter chains. The 
convolution theorem allows to define the LDO of k 
degree the operation performed by a k+1st order 
Gamma filter. 
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This is known as PMF of k degree. Generalizing, 
if at the input of k+1st order Gamma filter is applied 
a signal, signifying the n-order derivative of z(t) one 
obtain: 
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It can be shown that the j-order PMF of the z(t) 
signal has the property [8]: 
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The last term in (18) take into account the 
combined effects of initial condition and in on-line 
applications can be ignored because the filters are 
stable and causal. 

Applying the n-order PMF to the equation (9) 
yields: 
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This is an algebraic equation linear in parameters 

obtained from differential equation (9) assuming 
that the input-output signals of the system are 
measured. 

 
 

5  Self-tuning and Adaptive Control of 
the DC Drive System  
The DC motor is characterized by the transfer 
functions: 
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The motor model is completely specified if the 
parameters J,K,L,R aa and D are given. These five 
parameters can be calculatated if the coefficients of 
the transfer functions are known. 
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     The regression equations associated with the 
transfer functions (22) and (23) are 
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     According to PMF these two equations can be 
substituted with 
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     The structure of the on-line estimation modules 
for physical motor parameters is presented in Fig.1. 
     When the physical parameters of the motor are 
obtained they are used for the tuning of current and 
speed controllers as in Fig.2. In the adaptive control 
drive system, the numerical device will compute the 
new values of the continuous parametrs of the PI 
controllers and, after that, it will compute the new 
parametrers of the dicrete control laws using also the 
value assigned for the sampling period T. 
 
 

6  Experimental results 
Because of the amount of calculations involved, a 
floating point DSP system is used [9]. The dc motor 
nominal values are: Pn=1.7Kw, Un=110V, Ia=20A, 
Ωn=1500rpm. The gain of the chopper is Ka=125. 
     The recursive estimator must be correctly 
initialized (P(0), )0(θ̂ ). Even with correct initial 
values the estimations are not reliable during the 
transient time of the estimator. These initial 
estimations can cause dangerous commands which 
will determine actions of the chopper protections if 
they are used immediately by the adjusting 
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parameters block. Two solutions were found for this 
problem: the adaptation loop will be closed after the 
transient time of the estimator and the drive system 
is controlled during this time with a rough tuned 
control loop, or for the transient time of the 
estimator the chopper is feed with a test signal that 
will allow a correct estimation of the physical 

parameters and after that the adaptation loop is 
connected. In the experiments the second solution 
was adopted. 
     The physical parameters estimation is fully 
automated. This means that the electrical drive 
system possesses the self-tuning property. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1. Structure modules for on-line estimation of physical DC motor parameters  
     . 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.2. Adaptive structure of an electrical drive system with DC motor 

 
Once the controllers parameters tuned, the recursive 
estimator can be inhibited after 2.3 seconds. 
Because it remains activated even in the operating 

regime, it is sensitive to the parameters variations 
and allows a continuous adaptation. 
     When the elements of the diagonal of covariance 
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matrix P(k) have shrunk to very small values the 
estimator becomes disable. To be set enable again 
the covariance matrix P(k) must be initialized 
periodically. 

 
Fig.3. Electrical and mechanical signals of DC drive 
 

 
Fig.4. Estimated physical parameters of the motor 

 
     The experimental results for the self-
commissioning interval and for the normal operating 
interval, when the system has a trapezoidal reference 
signal, are presented in Fig.3 and Fig.4. The 
conventional control loops and the adaptation loop 
are both executed with 1.54 milliseconds sampling 
period. In order to avoid additional analog circuitry, 
the analogue Gamma filters were replaced with 
digital filter algorithms.  
     The experimental results emphasis a correct 
estimation of the motor physical parameters, a good 

parameters stability, and, consequently, good control 
performances. 
 
 

7   Conclusion 
The paper presents a solution for practical 
implementation of an adaptive and self-tuning DC 
drive system. There are presented the 
inconveniencies which may arise when the 
adaptation loop uses an estimator based on a discrete 
model of the process. A robust estimation technique 
of the system physical parameters is obtained if it is 
used the continuous model of the process correlated 
with the Poisson moment functional. The 
experimental results show the feasibility of the 
proposed adaptive control method. 
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