
 

System Representation by a set of Low Dimensional Models 
Miroslav Svítek 

Czech Technical University in Prague, Faculty of Transportation Sciences, 
                   Konviktská 20, 110 00 Prague 1 

 
 

1. Introduction 
The paper combines the approaches known in signal 

processing area with the approaches typical for neural 
networks. In the signal processing community the signal 
parameters as mean values, correlation matrix, 
covariance matrix, regression parameters vector, etc. are 
estimated through measured data. The knowledge of 
such parameters results in the identification of the 
optimal LTI (linear time invariant) model describing the 
main system property [1]. The model with estimated 
parameters could be used for time interpolation, filtering, 
extrapolation, etc.  

 
2. Sylvester's theorems 

The decomposition methodology described in this 
chapter is based on the application of Sylvester's 
theorems on system transition matrix A of m-
dimensional linear time invariant system described by 
state-space model: 

nnn

nn1n

ux    y
uxx

•+•=
•+•=+

DC
BA                   (1) 

where nnn y,u,x are m-dimensional state, input and 
output vectors in time interval n and A,B,C,D are state-
space mm ⋅ matrices.  
Theorem 1: Sylvester theorem for distinct eigenvalues 
If A is square system transition matrix (1) and if i.  
represents one of the n distinct eigenvalues of A, and if 
P(A) is any polynomial of the matrix A, then 
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where Adj(A) means the adjoin matrix that is formed by 
replacing each element of matrix A by its cofactor and 
then taking the transpose.  
Theorem 2: Sylvester theorem for repeated eigenvalues 
If A is square system transition matrix (1) and if i.  
represents an eigenvalue of A repeated is times, and if k 
is number of all distinct eigenvalues j. , and if P(A) is 
any polynomial of the matrix A, then 
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where Adj(A) means the adjoin matrix and if all 

eigenvalues are equal, then 1)(
k

ij
j =.−..

.

. 

Definition 1: 
With respect to equation (2) and with assumption of 
distinct eigenvalues the special matrixes 

n21 Z,....,Z,Z could be defined for matrix A: 
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Proof: The proof of theorem 1 and 2 is done in [4] where 
the proof of matrix components for repeated eigenvalues 
is also presented.  
 
3. Approximation of derivatives 

In equation (3) the derivatives are necessary to be 
solved. In following theorem the form of derivatives 
approximation is presented together with the 
approximation error. 
Theorem 3: Approximation of derivatives  
Let f(x) is any function of x and 
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derivatives of function f(x), then the approximate 
derivatives could be expressed 
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where for all derivatives the approximation error is 
proportional to ( )2h. .  
For better precision of approximation other approximate 
forms exist, e.g. for approximation error proportional to 

( )4h.  the following equations could be described: 
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Proof: The proof is given in [4]. 
 
Theorem 4: Complex-step approximation of derivatives  

Let f(x) is any function of x and 
dx

)x(df
 is first 

derivative of function f(x), then the approximate 
derivatives with complex-step approximation could be 
expressed: 
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where Im[.] means imaginary part. Then the 
approximation error is proportional to ( )2h. . 
 
Proof: Let us express  yjxz •+=  and 

( ) vjuzf •+=  together with Cauchy-Riemann 
equations [6]: 
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If f is analytic function (satisfy the (9) and (10)) than we 
can use and rewrite (9) as follows: 
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Since function f is real function of a real variable than 
0y = , ( ) ( )xfxu =  and ( ) 0xv = . Equation (11) can be 

than rewritten to (8). In order to determine the error 
involved in this approximation, the derivation based on 
Taylor series expansion is used (with pure imaginary 
step equal to hj• ): 
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           (12) 
Taking imaginary part of both sides of equation (12) and 
dividing this equation by h yields: 
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Hence the approximation is ( )2h. . The higher order 
derivatives express in Theorem 3 could be transferred 
into complex-step method by using approximation of 
Cauchy's Integral Formula in general form ( Γ  is a 
simple closed positively oriented contour that encloses 
z): 
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where m is the number of points used in the integration. 
the approximate of derivative of order 

1m,....,1,0n −= could be fond by using ( 14). From 
complex variable theory, for a real function of the real 
variable that is analytic holds: 

( ) ( ) vjuyjxfvjuyjxf •−=•−⇒•+=•+       (15). 

4. Approximation of derivatives in 
Sylvester theorem for repeated 
eigenvalues (transformed eigenvalues 
method) 
The approximation of derivatives (6), (7) could be 
applied to Sylvester theorem for repeated eigenvalues (3) 
and the following theorem could be defined. 
Theorem 5: Approximation of P(A) with repeated 
eigenvalues of matrix A   
If matrix A has k all distinct eigenvalues (3) where d 
eigenvalues d.  are repeated ds  times and ch 
eigenvalues ch. are poorly distinct, then the polynomial 
function P(A) could be approximated by set of ch 
distinct and by set of t transformed distinct 
eignevalues t.  
( hq,....,hq,..,hq,..,hq dddd1111 +.−.+.−.  ) with 

error proportional at least to )h(O 2  as follows: 
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where fq depends on selected approximate form (6), (7), 
(8) and on the multiplicity of repeated eigenvalue f. , 

.,fk  are weight constants of approximation form (6), (7), 

(8)  .
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component matrices assigned to transformed distinct 
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eigenvalues and h is selected small approximation 
parameter. 
Proof: 
If the Sylvester theorem for repeated eigenvalues (3) is 
used and if the approximation according to equation (6), 
(7) or (8) is applied then the part of equation (3) assigned 
to repeated eigenvalue i.  could be approximated with 

error proportional at least to )h(O 2  or more (depends on 
used approximate form, e.g. forms (6), (7) or (8)) as 
follows: 
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where hq,...,,..,hq iiiii •+..•−. are transformed 
eigenvalues assigned to is  times repeated eigenvalue i.  
and 

ii q,i0,iq,i Z,...,Z,..,Z − are transformed component 
matrices assigned to transformed eigenvalues 

hq,...,,..,hq iiiii •+..•−. . 
 
5. Approximation based on modified 
repeated eigenvalues (modified 
eigenvalues method)  

The Sylvester' theorem came out from Lagrange 
interpolation polynomial with distinct polynomial roots. 
The repeated roots in Lagrange polynomial could be 
modified and approximated by distinct roots according 
to following table with defined approximation error (it is 
easy to extend the table for higher root multiplicity): 

In case the parameter h is small enough the 
approximation error could be also small because of high 
power of h. This methodology could be applied to 
Sylvester's theorem and the modified eigenvalues could 

be used instead of repeated ones and then the 
decomposition could be done with help of equation (2). 
As an example following table describes the multiplicity 
of original repeated eigenvalue and its modification to 
distinct ones: 
Tab. 2 Original repeated and modified distinct 
eigenvalues 

Multiplicity of original  
repeated eigenvalues 

Modified distinct eigenvalues

2.  h   ,h +.−.  
3.  h  ,  ,h +..−.  
4.  2h  h,  h,-  ,h2 +.+..−.
5.  2h  h,  ,  h,-  ,h2 +.+...−.

etc. etc. 
The LTI dynamical system decomposition is based on 

the application of Sylvester's theorems or its 
approximation to state-space matrix A (1) and by using 
the property of components matrices to calculate the 
transformed input, output and state-space vectors of one-
dimensional models. 

 
6. The LTI system decomposition with 
distinct eigenvalues of transition matrix  

The LTI system decomposition with distinct 
eigenvalues could be done with help of following 
fundamental decomposition theorem.  
Theorem 6: Fundamental decomposition of LTI 
dynamical systems with distinct eigenvalues of transition 
matrix A 
Dynamical m-dimensional LTI dynamical system 
described by state-space model (1) with transition matrix 
A with distinct eigenvales could be decomposed into 

2m one-dimensional LTI models where the component 
matrices assigned to transition matrix A are used as 
transformation matrices of state, input and output vectors 
(filter banks). 

Tab.1: Modified roots in Lagrange polynomial [4] 
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Proof: 
The m-dimensional state-space model (1) with square 

mm ⋅ matrices A, B, C, D1 could be decomposed with 
help of components matrices m21 Z,...,Z,Z into 
following form  

nmn1nmn2n1

nmn2n1n,mn,2n,1

nmn2n1nmmn22n11

1nm1n21n1

uDZ...uDZxCZ..xCZxCZ
yZ....yZyZy..yy
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where form P(A)=A in equation (2) was used  and the 

matrix components  property ∑
=

=
m

1i
i 1Z  (5) was taking 

into account. By multiplying the equations (18) by 
component matrix jZ  and by taking into account the 

property jifor    0ZZ ji .=•  and 

jifor   ZZZ iji ==•  (5) the LTI dynamical system 
could be decomposed into m following sub-systems: 
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with transition value equal to j. . The transformed m-

dimensional state vectors nj xZ •  { }m,...,2,1j .  were 
obtained through filtering of state vector by component 
matrices (component matrices play the role of filter 
banks). Each component of transformed state vector 

nj xZ •  could be easily described as a first-order 

dynamical model because the transition value j.  is 

common for all m transformed states nj xZ • . 
 
7. Identification methods of low 
dimensional models 

The identification task yields to estimation of s-
dimensional vector unknown parameters: 

 
[ ]m21m21m21m21 ,...,,,p,...p,p,b,...,b,b,a,...,a,aw ...=r

 
             (20) 

based on the knowledge of data vector: 
 ]x,....,x,x,x,...,x,x[x 1i,m1i,21i,1i,mi,2i,1i −−−=r

  
                   (21) 

where the transformed state-vector fulfill the 
conditions on m one-dimensional models:  

                                                           
1 for non-square matrices B,C,D, the zero 
elements could be completed as well as in 
vectors nn y,u to achieve the form (4.1) 
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The parameters must be estimated under the pre-

defined composition rule: 
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where parameters m,m1,m1,1 r,....,r,...,r are given 

beforehand.  
The (22) could be rewritten into following form: 
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with the additional functions representing 

composition rule:   
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The (24) and (25) are set of n non-linear functions 

that could be linearized by matrix Taylor series as 
follows (from (24) and (25) it arises that the functions 

( ) ( )ini1 w,xf,....,w,xf rrrr
must converge to zero vector): 
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In next part we mark the vector of unknown 

parameters in i-time step as iwr : 

[ ]T
isiii wwww ,,2,1 ...=r

         (27) 

The measurement vector will be marked as 1iz −
r

and 
transition matrix between measurement and parameter 
vector as 1iD − . The vector 1iz −

r
and matrix 1iD − are 

computed from known data vector ixr and last estimate 
of parameters 1iw −

r
as follows: 
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            (29) 
 Based on representation (28) and (29) the 

equation for extended Kalman filter [14] could be 
written: 

 ii1i1i ewDz
rrr +•= −−     

            (30) 
where noise vector ie

r
 is supposed to be Gaussian 

with zero mean and covariance matrix Q:  
 
[ ] [ ] ji     ,cov    j,i      0,cov ==.= Qeeee jiji

rrrr
 

           (31) 
The time evolution of parameters vector is supposed 

to be random walk:  
i,w1ii eww

rrr += −            (32),   

where noise vector i,wer is supposed to be Gaussian 
with zero mean and covariance W: 
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           (33). 
The extended Kalman estimation filter could be for 

the studied case written in following form:  
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where a priory information 11 S,wr must be known 
(estimated) in advanced.  

 
8. Examples of low dimensional 
identification  
Let us define the LTI system with two repeated 
eigenvalues 121 == ..  as follows with matrix (23) 
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In this example the parameter vector 
),b,a,,b,a(w 222111 ..=r

will be estimated by 
identification method. The equations (26) could be 

rewritten for studied example as follows (in this example 
m=2, n=4): 
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)w,x(f
)w,x(f
)w,x(f
)w,x(f

rr

rr

rr

rr

 

 (37) 
 where )ˆ,b̂,â,ˆ,b̂,â(w 1i,21i,21i,21i,11i,11i,11i −−−−−−− ..=r

 
is last estimate of parameters vector. In simulation mode 
the noise covariance was selected: 
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In Fig. 1 the approximate and original evolution of 
state component i,1x is shown where the evolution of 
estimated vector parameters is shown in Fig. 2. 
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Fig.1 Approximate (+) and original evolution of state 
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Fig. 2 Evolution of estimated parameters with result: 
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4457.0â 100,1 = , 5540.0b̂ 100,1 = , 

0064.1ˆ
100,1 =. , 4767.0â 100,2 = , 4768.0b̂ 100,2 −= , 

9687.0ˆ
100,2 =.  
The same method was used for system with two 

complex conjugate eigenvalues 866.0j5.01 •+=. , 
866.0j5.02 •−=.  as follows 
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  (39) 
Fig. 3 shows the evolution of approximate and original 
state component i,1x  and Fig. 4 shows the evolution of 
parameters vector. 
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 Fig.3 Approximate (+) and original 

evolution of state components i,1x  
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Fig.4 Evolution of estimated parameters with 
result: 3637.0â 100,1 = , 3626.0b̂ 100,1 = , 

5165.0ˆ
100,1 =. , 3619.0â 100,2 = ,

3588.0b̂ 100,2 −= , 4923.0ˆ
100,2 =.  

9. Conclusion 
The presented results have shown the theory of LTI 

systems decomposition for distinct and repeated 
eigenvalues of transition matrix A of state-space model 
together with identification algorithm. This theory 
vindicates much known practice of mixtures of low 
dimensional dynamical models to approximate the 
higher order dynamical system. In paper the direct proof 
of LTI dynamical system decomposition with distinct 
and repeated eigenvalues of matrix A was presented as 
fundamental decomposition theorem. The decomposition 
theory was demonstrated on numerical example together 
with identification method. 
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