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1. Introduction

The paper combines the approaches known in signal
processing area with the approaches typical for neural
networks. In the signal processing community the signal
parameters as mean values, correlation matrix,
covariance matrix, regression parameters vector, etc. are
estimated through measured data. The knowledge of
such parameters results in the identification of the
optimal LTI (linear time invariant) model describing the
main system property [1]. The model with estimated
parameters could be used for time interpolation, filtering,
extrapolation, etc.

2. Sylvester's theorems

The decomposition methodology described in this
chapter is based on the application of Sylvester's
theorems on system transition matrix A of m-
dimensional linear time invariant system described by
state-space model:
X, =Aex +Beu 1)
y,= Cex, +Deuy,

where X ,u,,y, are m-dimensional state, input and
output vectors in time interval #» and A,B,C,D are state-
space m- m matrices.
Theorem 1: Sylvester theorem for distinct eigenvalues
If A is square system transition matrix (1) and if .,

represents one of the n distinct eigenvalues of A, and if
P(A) is any polynomial of the matrix A, then
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where Adj(A) means the adjoin matrix that is formed by
replacing each element of matrix A by its cofactor and
then taking the transpose.
Theorem 2: Sylvester theorem for repeated eigenvalues

If A is square system transition matrix (1) and if .,
represents an eigenvalue of A repeated s; times, and if &
is number of all distinct eigenvalues . ;, and if P(A) is

any polynomial of the matrix A, then

pay= 3 D |4 I PC)AdA -, D

s;i—1 k
]
(all distinct . ( - j)
cigenvalues) i
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where Adj(A) means the adjoin matrix and if all

k
eigenvalues are equal, then (. —

j.i

=1

Definition 1:
With respect to equation (2) and with assumption of
distinct eigenvalues the special matrixes

Z,72,,...,Z could be defined for matrix A:

" (A—. el , ) .
Z.=, ———— (4), with following properties:
ji ( i j)
Z,¢Z;=0 fori. j,
5)
Z,67,=2, fori=j, (

$7,e1
i=1

Proof: The proof of theorem 1 and 2 is done in [4] where
the proof of matrix components for repeated eigenvalues
is also presented.

3. Approximation of derivatives

In equation (3) the derivatives are necessary to be
solved. In following theorem the form of derivatives
approximation is presented together with the
approximation error.
Theorem 3: Approximation of derivatives
Let f(x) is any function of x and

df(x) d’f(x) d*f(x)
dx ~ dx? d<*
derivatives of function f(x), then the approximate
derivatives could be expressed

first, second, third, etc.

b

df(x) 1 e
o o T+ —fx=h)),

dfx) 1 ~ B
pealiere (f(x +h) = 2f(x) + f(x —h)),

dsf(j‘) %(f(x +2h) = 2f(x +h) + 2f (x —h) — f(x — 2h)),
dx 2h

etc.

(6)
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where for all derivatives the approximation error is
: 2

proportional to . (h )

For better precision of approximation other approximate

forms exist, e.g. for approximation error proportional to

. (h4) the following equations could be described:

df(x) 1
i 12h( f£(x +2h) +8f(x + h) — 8f(x —h) + f(x — 2h)),

dzf(j‘) ! (= f(x +2h) +16f(x +h) = 30f(x) + 16f(x — h) — f(x — 2h)),
dx 12h

etc.

(7)
Proof: The proof is given in [4].

Theorem 4: Complex-step approximation of derivatives
df (x)
dx
derivative of function f(x), then the approximate
derivatives with complex-step approximation could be

expressed:

is first

Let f(x) is any function of x and

df(x) _ . Im([f(x + joh)] Im[f(x + jeh)]
dx b0 h h

®)

where Im[.] means imaginary part. Then the

approximation error is proportional to . h? )

Proof: Letus express zZ =X+ joy and
f(z)=u+jev  together ~with Cauchy-Riemann

equations [6]:

u_-v ), MY (10)
.X

X .y .y
If fis analytic function (satisfy the (9) and (10)) than we
can use and rewrite (9) as follows:
cu_ o V(x+jely+h))—v(x +jey) 1)
.X hoo h
Since function f is real function of a real variable than
y=0, u(x)=f(x) and v(x)=0. Equation (11) can be
than rewritten to (8). In order to determine the error
involved in this approximation, the derivation based on
Taylor series expansion is used (with pure imaginary
step equal to jeh ):

s jon)= ) jon o0 e LSO o J T0)
(12)

Taking imaginary part of both sides of equation (12) and
dividing this equation by /4 yields:

drl) _ tmf(xejen)] o 10000,
dx h .

Hence the approximation is. (hz). The higher order

derivatives express in Theorem 3 could be transferred
into complex-step method by using approximation of
Cauchy's Integral Formula in general form (I" is a
simple closed positively oriented contour that encloses

R
flz+ree ™

2o on
2
e m
(14)
where m is the number of points used in the integration.
the approximate of  derivative of  order
n=0,,....m—1could be fond by using ( 14). From
complex variable theory, for a real function of the real
variable that is analytic holds:
f(x+jey)=u+jeov="f(x—jey)=u—jev  (15).
4. Approximation of derivatives in
Sylvester theorem for repeated
eigenvalues (transformed eigenvalues
method)
The approximation of derivatives (6), (7) could be
applied to Sylvester theorem for repeated eigenvalues (3)
and the following theorem could be defined.
Theorem 5: Approximation of P(A) with repeated

eigenvalues of matrix A
If matrix A has £ all distinct eigenvalues (3) where d

eigenvalues ., are repeated s, times and ch

d“f(z)= n! J( f(.) d =

. °
dz"  2emeji (. —z)" mer =

eigenvalues .  are poorly distinct, then the polynomial

function P(A) could be approximated by set of ch
distinct and by set of ¢ transformed distinct

eignevalues -

(., —qh,.  +qh,.,. =

error proportional at least to O(h”) as follows:

q¢hseecs. g +qsh ) with

k (A l) d  ar k (A— K'l)
P(A P . k‘. oP ; oh)e =
()Z() l(__x)@;% LBt shye, o
—ZP( ez +z Zk oP(. +.oh)eZ
(16)

where (; depends on selected approximate form (6), (7),
(8) and on the multiplicity of repeated eigenvalue . .,
kf“ are weight constants of approximation form (6), (7),
k A—. ol
® oz, = ATeD
Tl toeh—. )

component matrices assigned to transformed distinct

transformed
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Tab.1: Modified roots in Lagrange polynomial [4]

modified
roots/ (a-2h) (a-h) (ath) (at2h) approx.
repeated error
roots
(x +a)’ 0 (x+(a—h)) (x+(a+h)) 0 h?
(x+a)’ 0 (x+(a—=h)) | (x+a) | (x+(a+h)) 0 h’(x +a)
(x +a)* (x+(a—-2h)] (x+(a—h)) (x+(a+h)) | (x+(a+2h)) 4h* —
—5h*(x +a)’
(x+a)’ | (x+(a-2h)] (x+(a—-h)) | (x+a) | (x+(a+h)) | (x+(a+2h))| 4h*(x+a)-
—5h*(x +a)’

eigenvalues and % is selected small approximation
parameter.

Proof:

If the Sylvester theorem for repeated eigenvalues (3) is
used and if the approximation according to equation (6),
(7) or (8) is applied then the part of equation (3) assigned
to repeated eigenvalue could be approximated with

T i

error proportional at least to O(h”) or more (depends on

used approximate form, e.g. forms (6), (7) or (8)) as
follows:

(s, =D .5 . (=) :(si—l)! d. s *PCeZ()

joi

(1) | &7 | P(.)eAdi(A—. o) -y [a }

=k_q’ oP(.,—q; *h) .Zi,—q, +..+k, oP(. i)-Z‘,0 +..+kq’ oP(.,+q; sh) OZi_q‘

(17)

where ., —q;*h,..,. ,..,.,+q,®hare transformed

eigenvalues assigned to s, times repeated eigenvalue . ;
and Zi’_qi,..,Zi’O,...,Zi,qi
matrices  assigned to transformed
..—q;*h,.,. ,eee,. ;+q,h.

are transformed component

eigenvalues

5. Approximation based on modified
repeated eigenvalues (modified

eigenvalues method)

The Sylvester' theorem came out from Lagrange
interpolation polynomial with distinct polynomial roots.
The repeated roots in Lagrange polynomial could be
modified and approximated by distinct roots according
to following table with defined approximation error (it is
easy to extend the table for higher root multiplicity):

In case the parameter 4 is small enough the
approximation error could be also small because of high
power of A. This methodology could be applied to
Sylvester's theorem and the modified eigenvalues could

be used instead of repeated ones and then the
decomposition could be done with help of equation (2).
As an example following table describes the multiplicity
of original repeated eigenvalue and its modification to
distinct ones:

Tab. 2 Original
eigenvalues

repeated and modified distinct

Multiplicity of original | Modified distinct eigenvalues
repeated eigenvalues
2 . —h, . +h
3 .—h,.,. +h
4 . —2h, . -h,. +h,. +2h
5 .—=2h, . -h,.,. +h, . +2h
etc. etc.

The LTI dynamical system decomposition is based on
the application of Sylvester's theorems or its
approximation to state-space matrix A (1) and by using
the property of components matrices to calculate the
transformed input, output and state-space vectors of one-
dimensional models.

6. The LTI system decomposition with

distinct eigenvalues of transition matrix
The LTI system decomposition with distinct

eigenvalues could be done with help of following

fundamental decomposition theorem.

Theorem 6: Fundamental decomposition of LTI

dynamical systems with distinct eigenvalues of transition

matrix A

Dynamical m-dimensional LTI dynamical system

described by state-space model (1) with transition matrix

A with distinct eigenvales could be decomposed into

m? one-dimensional LTI models where the component
matrices assigned to transition matrix A are used as
transformation matrices of state, input and output vectors
(filter banks).
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Proof:
The m-dimensional state-space model (1) with square
m- mmatrices A, B, C, D' could be decomposed with

help of components matrices Z,,Z,,...,Z into
following form
len+l + ZZXn+1 +..+ ZanH =

=, Zx,+.,Zx, +.+. Z X +Z eBeu +7Z,eBeu +.+7Z eBeu,
Vit You ot Yun =20V, + 2,0y, +o 2 0y, =
=Z7,0Cox +7Z,0Cox +.+Z7Z oCex +Z eDeu +..+7Z eDeu

(18)

where form P(A)=A in equation (2) was used and the

matrix components property ZZi =1 (5) was taking
i=1

into account. By multiplying the equations (18) by

component matrix Zj and by taking into account the

property Z,¢Z;=0 fori. ]

Z,¢Z;=Z7; fori=j (5) the LTI dynamical system

and

could be decomposed into m following sub-systems:
Z;ox, ,=. %L, %x +Z,eBeu,
Yin=2;0y,=Z,0Cex +Z eDeu,

(19)

with transition value equal to . ;. The transformed m-

dimensional state vectors Z; eX, ] {l,2,...,m} were

obtained through filtering of state vector by component
matrices (component matrices play the role of filter
banks). Each component of transformed state vector

Z,ex, could be easily described as a first-order
dynamical model because the transition value . ; is

common for all m transformed states Z; ox .

7. Identification methods of low

dimensional models
The identification task yields to estimation of s-
dimensional vector unknown parameters:

9015055 D DD Do 15+ 290ees s m]
(20)

W= [al,az,...,a

based on the knowledge of data vector:
X; = [Xl,i’X2,i""7Xm,i’Xl,i—l’X2,i—1""'>Xm,i—1]

1)

where the transformed state-vector fulfill the

conditions on m one-dimensional models:

! for non-square matrices B,C,D, the zero
elements could be completed as well as in

vectors U, Y, to achieve the form (4.1)

a, b . p Xy o 00 a b . p Xyia
a, b, Py | | i | o ., . . a, by . py||Xaia
a, b, o PullXmi 0 . 0 .. ]llam bum -« Pull|Xmi

(22)

The parameters must be estimated under the pre-
defined composition rule:

X L Om a . b X
= o
Xm i I.m,l I.m,m am pm Xm,i
(23)
where parameters I,,...,T, |,....,[, ,are given
beforehand.
The (22) could be rewritten into following form:
fl(iwv.v) a b . p X o 00 a b . op Xic1
fz()?i,\xl) _ a, b, . p, Xai _ 0 ., . . a, b, P X2i-1
. [V I e O .
£,&uW)| [a, by, o« Pl [Xmi| LO -~ 0 .. ]la, by o pul X
(24)
with  the additional functions representing
composition rule:
£ (X, W) Xy Lo O [ [ & 0 Prf | Xy
. = —_ [
fn(xi’w) Xm,i rm,l rm,m am . pm Xm,i
(25)

The (24) and (25) are set of n non-linear functions
that could be linearized by matrix Taylor series as
follows (from (24) and (25) it arises that the functions

f,(X, W, ),.....f, (X, W, )must converge to zero vector):

o o AEW) L AELW) (W)
fGw )] [HGW, v ow, T w wii | [ Wi
£, W, L (X Wi, . . . . Wil [ Wai
= —+ -
&%) |£&.%.) £, %) .f(&,W) (%, W) wo | W
W, .W, A P
(26)
In next part we mark the vector of unknown

parameters in i-time step as W, :
a
w,,] 27)

The measurement vector will be marked as z,_ and

w;, = [Wl,i w,

i
>

transition matrix between measurement and parameter

vector as D, ,. The vector Z_,and matrix D,  are
computed from known data vector X;and last estimate

of parameters W,_, as follows:

AGW) EEW) 6w )
W, LW, h W, Wi | [RE.w)
— Wai £,(% W, )
Z‘71
L6 LED LG |w | [6Re)
LW, LW, h LW, .
(28)

(= =]

(=T
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_'fl(iia\x}) (X, w) -ﬁ(iia‘_’{’)_
CW, CW, i LW
D, , =
g EL,w) L (X, W) (X, W)
W, .W, h o

29
Based on representation (28) and (29)( tl)le
equation for extended Kalman filter [14] could be
written:
i-1 i oW, + €
(30)
where noise vector €, is supposed to be Gaussian

with zero mean and covariance matrix Q:

cov[éi,éj]zo i. ], cov[é,-,éj]=Q i=]

(31
The time evolution of parameters vector is supposed
to be random walk:

W =W, +¢; (32),
where noise vector €_ .is supposed to be Gaussian

with Zero mean and covariance W:

. ]=0 i covle,.é, ]=w i=j
(33).
The extended Kalman estimation filter could be for
the studied case written in following form:
W, =w,_, +H oz ,-D_ ew,_,)
S, =S,,+Q (34)
Hi = Si—l 'DiT—l .<Di—l .Si .DiT—l + W)il
where a priory information Ww,,S, must be known
(estimated) in advanced.

cov[ew’i, s

8. Examples of low dimensional
identification

Let us define the LTI system with two repeated
eigenvalues . | =. , =1 as follows with matrix (23)

XH 0 1} {x]{e} [wao.s}
| X2, -1 2] x5 €2 ’ X20 -2

(33)
1, rl,z}:{l 1} (36)
REREERTS 1 -1
In this example the  parameter

W:(alabla' 19a25b29' Z)W111 be
identification method. The equations (26) could be

vector
estimated by

rewritten for studied example as follows (in this example

m=2, n=4):
fl(iﬂwifl)
[CR A I k- +BZ,i—IX2,i = 2o ®@yi 0%+ Bz,i—l *X2i1)
f}(ii’wifl) -

£, W)

QX by Xy = @ X by ex, )

@+, ) 0%+ (b +by ) e, — X

@~y e + (B],i—l - Bz,H) Xy T Xy

(37)
where W, = (al,i—lsbl,i—ls- 1,i—1’a2,i—1’b2,i—1" 2ic1)

is last estimate of parameters vector. In simulation mode
the noise covariance was selected:

1 0
Q:{o 1} G

In Fig. 1 the approximate and original evolution of
state component X, ;is shown where the evolution of
estimated vector parameters is shown in Fig. 2.

Ewolution of real and approximated system
20

0~

T
2 B

. N
N

-80 K,

-120

Nl

0 5 10 15 20 25 30
Time interval

Evolution of real and approximated state component X1

-140

Fig.1 Approximate (+) and original evolution of state

components

Evolution of estimated parameters

0.5

\:\}{K/
J

\
L
y
o

Evolution of estimated parameters

L

-0.5 —
0 10 20 30 40 50 60 70 80 90 100
Time interval

(

Fig. 2 Evolution of estimated parameters with result:
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8,10 = 0.4457 b, 1) = 0.5540,
; 1100 =1.0064,4, ,, =0.4767 ,62’100 =-0.4768,
a0 = 0.9687

The same method was used for system with two
., =0.5+70.866,

complex conjugate eigenvalues
., =0.5—700.866 as follows

X | 0 1] X N € Xio| |05
Xy =11 X5.i-1 €, ’ X120 -2
(39

Fig. 3 shows the evolution of approximate and original
state component X,; and Fig. 4 shows the evolution of

parameters vector.

Ewolution of real and approximated system [1 ]

I

|
n
i
I
Il
I
| u
_8 EEE

[2]

i
I
L]
]
L

‘f» 3]
L

i
V

Evolution of real and approximated state component X1
o N
i
—

00 0 w0 40 0 s 70 8 w0 10 [4]
Time interval
Fig.3 Approximate (+) and original

evolution of state components X, .

Evolution of estimated parameters

(2]
o
Ny
s
2 08
g | WAL,
£ 06 s
£ PO(N00 oo
= 04}
< SN
5 02
8
0
0.2 A\/\,
04 MV ~N————
"0 10 20 30 40 5 60 70 80 90 100
Time interval

Fig.4 Evolution of estimated parameters with

result: 4, o, = 0.3637,b, ,, = 0.3626,
oo = 0.5165,4,,, =0.3619,
B,100 =—0.3588, ., o0 = 0.4923

9. Conclusion

The presented results have shown the theory of LTI
systems decomposition for distinct and repeated
eigenvalues of transition matrix A of state-space model
together with identification algorithm. This theory
vindicates much known practice of mixtures of low
dimensional dynamical models to approximate the
higher order dynamical system. In paper the direct proof
of LTI dynamical system decomposition with distinct
and repeated eigenvalues of matrix A was presented as
fundamental decomposition theorem. The decomposition
theory was demonstrated on numerical example together
with identification method.
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