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Abstract: 
 The paper presents the mathematical theory of probabilistic multi-models composition set together by predefined 
probabilistic model components selected by designer. Each probabilistic component is composedd of phase parameter 
that characterizes the composition rules of multi-models assemble and the mixture parameter that characterizes 
component significance to capture the features of studied system. The presented approach results in  introduction of 
complex probabilities being represented in spectral area with similar attributes like e.g. Fourier series. Presented theory 
is exemplified  on numerical example to demonstrate its practical use. 
 

 
 

1. Introduction 
 The system modeling is extensive area of physical and 
technical disciplines bringing a lot of results in past. One 
of the main problems caused especially in large scale 
systems in e.g. telecommunication, transport, etc. area 
could be characterized like "curse of dimensionality". 
One way how to overcome the dimensionality problem 
consists in predefinition of partial low-dimensional 
“peaces of knowledge” represented by probabilistic 
model components. These model components should be 
known a priori, or chosen by model designer. The 
problem referred to in this paper is to answer the 
question how the set of predefined model components 
should be combined to catch the main features of studied 
system and how many parameters are necessary to 
perform the multi-models mixture. 
 The inspiration for the above defined problem came 
from quantum physics [4] where the backward problem 
against to our problem was identified - the precise set of 
particles' models is known from physical theory in 
advance but their interaction results in probabilistic 
transforms induced by context transformation [1,2] 
which involves mutual influences of physical 
parameters, e.g. link between position and momentum 
measurement.  
 
2. Mathematical Theory of Multi-Models 
Composition 
 We start the presented mathematical theory by revision 
of well-known Bayes' formula for multi-model 
components where each model component is not known 
in advance and is a priori predefined by designer. This 
assumption will yield to introduction of probabilities 
conditioned on designer's decision which takes into 
account statistical deviation parameters that are equal to 
zero if designer's decision is accurate. In analogy with 
results achieved in [1] and [2] the multi-models 

components could be represented in complex area in 
same way like e.g. periodic signal by Fourier series. The 
analogy with Fourier series is right because the phases 
represent the rule of multi-model composition (it is 
structural parameter) and amplitude the significance of 
each model (it shows how often the model is used). The 
spectral representation of multi-models composition is 
demonstrated at the end of this chapter.   

2.1 Representation of Multi-Models System 

 Let the sequence with m output values 
{ }m,...,2,1j,Yj . is represented by a set of n models 

( ) { }n,..,2,1i,HYP ij . and the models are changed over 

with probability ( )iHP . Than according to well-known 
Bayes' formula the probability of jth output value could 
be computed as follows: 

( ) ( ) ( )∑
=

•=
n

1i
iijj HPHYPYP     

       (1) 
 The equation (1) holds only if we know both 
probabilities ( )iHP  and the model 

components ( ) { }n,..,2,1i,HYP ij . .  Model 

components ( )ij HYP represent in our approach the 

partial knowledge of modeled system.  
 In practical situations the number of model components 
n is finite and it is often chosen as predefined set of 
multi-model components (mixtures) ( )C,HYP ij  where 
C denotes that the model component is conditioned on 
designer decision (letter C means context transition used 
in [1] in quantum physics representation). The 
probabilities ( )iHP  mean the combination factors of 
model mixture.  
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 In case the real model components ( )ij HYP  are same as 

designer's models ( )C,HYP ij , the equation (1) is 
fulfilled. In other case the Bayes's formula must be 
changed to remove the designer's decision (context 
transition C).     

2.2 Composition of Multi-Model Components 

 With respect to inspiration of results achieved in 
quantum mechanics [1] the Bayes's formula (1) could be 
rewritten as following1 (here the backward process to the 
one  in [1] studied2 and (2) is adopted for multi-models 
case): 

( ) ( ) ( ) ( ) ( ) ( ) ( ) )j(
L.k

n

1i Lk
LLjkkjiijj HPC,HYPHPC,HYP2HPC,HYPYP .•••••+•=∑ ∑

= <

        
             (2) 
where coefficients )j(

L,k. are normalized statistical 
deviations that arise due to designer's decision-making 
(in [1] it means the transitions between reality and 
context C): 

( ) ( ) ( )( ) ( ) ( ) ( )( )( )
( ) ( ) ( ) ( )LLjkkj

LjLjLkjkjk
)j(
L,k

HPC,HYPHPC,HYP2

C,HYPHYPHPC,HYPHYPHP
1n

1

••••

−•+−•
−=.

        
              (3) 
 If designer's decision is right the coefficients )j(

L,k.  yields 
to zero and equation (2) converge into equation (1).    
2.3 Definition of Complex Probabilistic Models 
 The achieved results in [2, 3] was taken into 
consideration in definition of complex probabilistic 
models. In [3] the general random variables taking 

2n = different values ware (inductively) reduced to the 
case of dichotomous random variables. In [2] the 
composition procedure of known components 
(theoretical models of quantum components) was 
applied to identify the context transited output (measured 

                                                 
1 The rewritten form (2) represents 
multidimensional Law of cosines that for 2-
dimensional case could be written as 

( )⇓•••++= coscb2cba 222  where 
⇓ is angle between the sides b and c. The 
form (1) represents rectangle and form (1) 
triangle. The fundamentals of equation (1) 
and (2) came from basic geometric 
principle. 
 
2 In [1] the components probabilities 

( )ij HYP  are known from the theory and 

the context C transited result ( )CYP j  
caused by e.g. preparation procedure is fond 
in similar way like in (2). 

output of whole set of quantum components). Firstly the 
quantum system is expected to be prepared under a 
complex of physical conditions marked by C and than 
the measurement/filtration is performed. The output is so 
affected by preparation procedure C that yields to wave 
probability interpretation together with reconstruction of 
quantum theory on the basis of the formula of total 
probability [2].  
 The extended Bayes' formula (2) can be rewritten into 
complex representation defined in following theorem: 

Theorem 1: 

 Let n models ( ) { }n,..,2,1i,C,HYP ij .  with m output 

values { }m,...,2,1j,Yj .  denotes that ith model 

component iH  is conditioned on designer's decision 
represented by parameter C and let ( )iHP  represents the 
probability occurrence of iH model, than the probability 
of jth output value ( )jYP  could be characterized by 

complex parameter ( )jY.  with following properties: 

( ) ( )2

jj YYP .=      

             (4) 

( ) ( )∑
=

.=.
n

1i
jij YY      

              (5) 
where ( ) ( )i,Y jji ⇓. are computed as follows: 

( ) ( ) ( ) ( )ij
iijji

jeHPC,HYPY ⇓•••=.    

              (6) 
and parameters ( )ij⇓  are figured out through algorithm 
described bellow: 

( )
( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )n1n1nn
.....,

,3223

,212
,01

jjjj

jjjj

jjj

j

α−−.+−⇓=⇓

α−.+⇓=⇓

α−.=⇓

=⇓

   

     

( )( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( )( )n1ijiij

n1ijiijnij
n1iij

H...HYPHPC,HYP2
H...HYPHPC,HYPH...HYP

H...H,HY
..•••

..−•−..
=..∝

+

+
+

( ) ( )( )( )n1iijj H...H,HYcosari ..∝=. +   
      

( ) ( ) ( ) ( )( ) ( )( )
( )( ) 














..

..•..∝+•
=α ++

nij

n1ijn1iijiij
j H...HYP

H...HYPH...H,HYHPC,HYP
cosari

 
        
          (7) 
 

Proceedings of the 5th WSEAS/IASME Int. Conf. on SYSTEMS THEORY and SCIENTIFIC COMPUTATION, Malta, September 15-17, 2005 (pp294-299)



 3

Proof: 
 For proving original Theorem 1 the formula of total 
probability described in [2] was used for inspiration. In 
quantum mechanics the back-ward problem in 
comparison with this paper was introduced. This means 
that in quantum mechanics the precise components 
models ( ) { }n,..,2,1i,HYP ij . were known (description 

of quantum states without interactions) and the context 
transited result ( )CYP j  was computed (result covering 
interactions was marked as context C probability 
transition).  
Let us suppose that we have complete set of models 
{ }321 H,...,H,H  with property: 

( ) 1H...HP n1 =..      
               (8) 
Than equation (9) and (10) could be derived from 
probability rules: 

( ) ( )( ) ( ) ( ) ( )( )
( )( ) ( ) ( ) ( )( )n2j11jn21j

n2j11jn1jj

H...HYPHPC,HYPH...H,HY2            

H...HYPHPC,HYPH...HYPYP

..•••..∝•+

+..+•=..=

        
                (9) 
 

( )( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( )( )n2j11j

n2j11jn1j
n21j

H...HYPHPC,HYP2

H...HYPHPC,HYPH...HYP
H...H,HY

..•••

..−•−..
=..∝

          
              (10) 
The proof could be easily done by substitution of (10) 
into (9). 
If we suppose that 

( ) ( )2

j1j YYP .=      

              (11) 
then the equation (9) could be rewritten into complex 
form: 

( ) ( ) ( ) ( ) ( )( )n2j
1j

11jj1 H....HYPeHPC,HYPY j ..•+•=. .•

             (12) 
 

( ) ( )( )( )n21jj H...H,HYcosar1 ..∝=.   
             (13) 
Because ( )j1 Y.  is complex value it could be 
represented by complex module and angle: 
 

( ) ( )( ) ( )1j
n1jj1

jeH...HYPY α••..=.   

            (14) 
 

( ) ( ) ( ) ( )( ) ( )( )
( )( ) 














..

..•..∝+•
=α

n1j

n2jn21j11j
j H...HYP

H...HYPH...H,HYHPC,HYP
cosar1

            (15) 

In the same way as in (9) and (10) the following 
equations (16) and (17) could be written as second step 
of derived algorithm (the proof is same): 
 

( )( ) ( ) ( ) ( )( )
( )( ) ( ) ( ) ( )( )n3j22jn32j

n3j22jn2j

H...HYPHPC,HYPH...H,HY2            

H...HYPHPC,HYPH...HYP

..•••..∝•+

+..+•=..

        
            (16) 
 

( )( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( )( )n3j22j

n3j22jn2j
n32j

H...HYPHPC,HYP2

H...HYPHPC,HYPH...HYP
H...H,HY

..•••

..−•−..
=..∝

 
           (17) 
Then equations (12), (13), (14) and (15) could be 
rewritten into forms expressed in (18), (19), (20) and 
(21) using the same methodology as the second 
algorithm step:  
 

( ) ( ) ( ) ( ) ( )( )n3j
2j

22jj2 H....HYPeHPC,HYPY j ..•+•=. .•

           (18) 
 

( ) ( )( )( )n32jj H...H,HYcosar2 ..∝=.   
            (19) 
 

( ) ( )( ) ( )2j
n2jj2

jeH...HYPY α••..=.   

            (20) 
 

( ) ( ) ( ) ( )( ) ( )( )
( )( ) 














..

..•..∝+•
=α

n2j

n3jn32j22j
j H...HYP

H...HYPH...H,HYHPC,HYP
cosar2

 

        
          (21) 
The procedure described in (16) - (21) could be 
generalized for i-step of algorithm as it is presented in 
(22) - (27): 

( )( ) ( ) ( ) ( )( )
( )( ) ( ) ( ) ( )( )n1ijiijn1iij

n1ijiijnij

H...HYPHPC,HYPH...H,HY2            

H...HYPHPC,HYPH...HYP

..•••..∝•+

+..+•=..

++

+

        
          (22) 
 

( )( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( )( )n1ijiij

n1ijiijnij
n1iij

H...HYPHPC,HYP2

H...HYPHPC,HYPH...HYP
H...H,HY

..•••

..−•−..
=..∝

+

+
+

        
          (23) 

( ) ( ) ( ) ( ) ( )( )n1ij
ij

iijji H....HYPeHPC,HYPY j ..•+•=. +
.•  

          (24) 
 

( ) ( )( )( )n1iijj H...H,HYcosari ..∝=. +   
           (25) 
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( ) ( )( ) ( )ij
nijji

jeH...HYPY α••..=.   

            (26) 
 

( ) ( ) ( ) ( )( ) ( )( )
( )( ) 














..

..•..∝+•
=α ++

nij

n1ijn1iijiij
j H...HYP

H...HYPH...H,HYHPC,HYP
cosari

        
            (27) 
 By combining different expressions of 

( ) ( )jnj1 Y,...,Y ..  described above the complex 
representations of partial component 

( ) ( ) ( ) ( )ij
iijji

jeHPC,HYPY ⇓•••=. for { }n,..,2,1i .  

together with expression of their phase ( )ij⇓  could be 
derived as follows:  

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )[ ]
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )nj

nnj
2j

22j11j

n4j
3221j

33j
3221j

22j
21j

11j

n3j
221j

22j
21j

11j

n3j
2j

22j
21j

11j

j2
21j

11j

n2j
1j

11jj1

jj

jjjj

jjjjjj

jjjjj

jjj

jj

j

eHPC,HYP...eHPC,HYPHPC,HYP

H...HYPe

HPC,HYPeHPC,HYPeHPC,HYP

H...HYPeHPC,HYPeHPC,HYP

H...HYPeHPC,HYPeHPC,HYP

YeHPC,HYP

H...HYPeHPC,HYPY

⇓•⇓•

α−.+α−.•

α−.+α−.•α−.•

.+α−.•α−.•

.•α−.•

α−.•

.•

••++••+•=

=..•+

+••+••+•=

=..•+••+•=

=..•+••+•=

=.•+•=

=..•+•=.

        
           (28) 
From (28) the algorithm for phase representation ( )ij⇓  
of complex models probabilities could be easily derived:  

( )
( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )n1n1nn
.....

32232213

212
01

jjjj

jjjjjjjj

jjj

j

α−−.+−⇓=⇓

α−.+⇓=α−.+α−.=⇓

α−.=⇓

=⇓

            (29) 
Theorem 1 is thus proved. 
 

2.5 Spectral Representation of Complex Multi-
Models Probabilities 

 In a same way as the periodic signal is represented in 
spectral area by well-known Fourier series (amplitude 
and phase of each harmonic component) the complex 
probabilities of multi-models could be also represented 
in complex plain where module has analogy with 
probability (amplitude reflects the rate of model 
component occurrence in long time period) and phase 
describes how the multi-models should be composed to 
describe the real system (phase reflect overlapping of 
multi-models selected a priory by designer).  
 Because Theorem 1 is independent on models 
selection ( ) { }n,..,2,1i,C,HYP ij . , these models could 

be chosen in advance to cover whole range of 

probabilistic area. The selection of models ( )C,HYP ij  

has analogy with frequency selection in Fourier 
transform. The parameters ( )iHP  and ( )ij⇓  could be 
estimated from real data sample (like amplitude and 
phase in Fourier transform). Generally the more multi-
models the lesser phase (for greater magnitude of 
statistical deviations, the hyperbolic or hyper-
trigonometric transform could be applied as is cited in 
[1]). 
 For example, if we have system with two output 
components { }1,0Y . and we chose a priori the number 
of models n=4, then models could be for example 
defined as follows: 
 

MODEL 
IDENTIFICATIO

N iH  

1H
 

2H
 

3H
 

4H
 

( )C,H1YP i=
 

0.8 0.6 0.4 0.2 

( )C,H0YP i=
 

0.2 0.4 0.6 0.8 

 
Tab.1 Predefined probabilistic multi-models components 
for { }1,0Y .  and n=4. 
 
Than complex amplitude and phase representation could 
be expressed as in Fig.1.   
 
 

 
  Fig.1 Spectral representation of multi-models 
complex probabilities 
 
3. Numerical example 
 Let two values time series { }1,0Y .  is composed from 
mixture of three time series (component time series) 
described by probabilities ( )1HYP , ( )2HYP , ( )3HYP  
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where each component time series occur with 
probabilities ( )1HP , ( )2HP  and ( )3HP . The 

probabilities ( ) { }3,2,1i,HYP i . are defined in Tab.2. 

The probabilities ( )iHP  were chosen: 

( ) ( ) ( )
3
1HPHPHP 321 ===     

       (30) 
 

MODEL 
IDENTIFICATION 

iH  

1H  2H  3H  

( )iH1YP =  
0.9 0.5 0.4 

( )iH0YP =  
0.1 0.5 0.6 

 
Tab.2 Real time series components ( ) { }3,2,1i,HYP i .  
 
 The designer's decision (conditioned by letter C) is 
given in Tab.3 (based on principle of Tab.1). 
 

MODEL 
IDENTIFICATION 

iH  

1H  2H  3H  

( )C,H1YP i=  
0.8 0.6 0.7 

( )C,H0YP i=  
0.2 0.4 0.3 

 
 Tab.3 Designer's decision of time series components 

( ) { }3,2,1i,C,HYP i .  
 
 By using equation (6) together with algorithm (7) the 
following complex components could be numerically 
calculated: 
    

( ) ( ) ( ) ( ) 5164.0eHPC,H1YP1Y 1j
111

1 =••===. ⇓•  

           (31) 
( ) ( ) ( ) ( ) 5166.0j2j

222 e4472.0eHPC,H1YP1Y 1 •⇓• •=••===.  

           (32) 
( ) ( ) ( ) ( ) 4012.2j3j

333 e4830.0eHPC,H1YP1Y 1 •⇓• •=••===.
            (33) 

( ) ( ) ( ) ( ) 2582.0eHPC,H0YP0Y 1j
111

0 =••===. ⇓•  

           (34) 

( ) ( ) ( ) ( ) 2371.1j2j
222 e3651.0eHPC,H0YP0Y 0 •⇓• •=••===.  

       (35) 
( ) ( ) ( ) ( ) 1924.2j3j

333 e3162.0eHPC,H0YP0Y 0 •⇓• •=••===.  

       (36) 
 
Based on equation (5) the two complex parameters could 
be fond as follows: 
 

( ) ( ) ( ) ( ) 7837.0j
321 e7746.01Y1Y1Y1Y ••==.+=.+=.==.  

          (37) 
( ) ( ) ( ) ( ) 2596.1j

321 e6325.00Y0Y0Y0Y ••==.+=.+=.==.  
          (38) 
 
where probabilities of falling one or zero could be 
computed: 
 

( ) ( ) 6.01Y1YP 2 ==.==     
         (39) 

( ) ( ) 4.00Y0YP 2 ==.==     
         (40) 
 
 The outcomes (39), (40) agree with the result achieved 
with the knowledge of model components given in Tab.1 
and by using of Bayes' formula (1): 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) 6.0
3
14.05.09.0               

HPH1YPHPH1YPHPH1YP1YP 332211

=•++=

=•=+•=+•===

          (41) 
 The above mentioned numerical example shows that the 
theory of multi-models composition is feasible. In 
practical analyzes the amplitudes and phases of model 
components will be estimated from real time series. 
 
4. Conclusion 
 The theory of probabilistic multi-models composition is 
the starting point of large scale systems modeling by 
complex probabilities representing the partial knowledge 
of studied systems. The results could be used for finding 
decision-making or control strategies of such systems, 
etc.  
 The presented methodology was shown only for case of 
output time series modeling but it could be extended to 
dynamical system modeling [5, 6, 7] where partial 
system knowledge reflex predefined low dimensional 
models with predefined control strategies. Composition 
of dynamical system components could yield to new 
algorithm of real system control strategy. 
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