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Abstract: - In this paper, an evolutionary approach is proposed to obtain a reduced-order discrete interval model 
for uncertain discrete-time systems having interval uncertainties based on resemblance of discrete sequence 
energy between the original and reduced systems. System performance of the discrete interval model obtained 
by using the proposed evolutionary approach is then verified based on time responses of the resulting model in 
comparison to existing methods to demonstrate the effectiveness of the proposed approach. 
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1. Introduction 
Most practical systems, such as flight vehicles, 
electric motors, and robots, are formulated in 
continuous-time uncertain settings. The uncertainties 
in these systems arise from unmodelled dynamics, 
parameter variation, sensor noises, actuator 
constraints, etc. These variations do not follow any of 
the known probability distributions in general, and 
are most often quantified in terms of amplitude 
and/or frequency bounds. Hence, practical systems or 
plants are most suitably represented by 
continuous-time parametric interval models [1,2], 
instead of deterministic mathematical models.  

In many situations, it is also desirable to replace 
the high-order system by a lower order model. 
Typical methods for model reduction include 
aggregation method, moment matching technique, 
Pade approximation, and Routh approximation, etc. 
Recent developments of model reduction have been 
made toward the direction to handle uncertain 
interval systems [3]-[6] based on variants of the 
Routh approximation methods, where interval 
arithmetic is performed to derive Routh βα −  or 

δγ −  canonical continued-fraction expansion and 
inversion [7]. It has been shown, however, that some 
interval Routh approximants may not be robustly 
stable even though the original interval system is 
robustly stable [6,7]. Furthermore, the reduced 
models obtained via these methods are generally not 
suitable for robust controller design because of their 

poor frequency responses in comparison to their 
original counterpart [7]. As far as model reduction of 
discrete interval systems is concerned, very limited 
discussions have been found in literature [17]-[24]. 
Among them, there was a method of model order 
reduction using Pade approximation to retain 
dominant poles [8], where the denominator of the 
reduced model is formed by retaining the dominant 
poles of the given discrete interval system, while the 
numerator is obtained by matching the first r 
moments of the model with that of the system. Based 
on multipoint Pade approximation [9], a reduced 
model was obtained as a Pade approximant of the 
original system about 2r points. However, system 
performances of the reduced-order models via the 
above-mentioned methods are generally not 
satisfactory. More effective approaches need to be 
developed so that characteristics of the reduced 
model suitably approximates those of its original 
system. 

Recent developments of evolutionary 
algorithms [10,12] have provided a promising 
alternative to address the above-mentioned problems 
and difficulties because of their capabilities of 
directed random search for global optimization 
[13,14]. This motivates the use of genetic algorithms 
to derive a reduced discrete interval model with a 
desired order for the original system based on the 
degree of resemblance of the discrete sequence 
energy. System performance of the discrete interval 
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model obtained by using the proposed evolutionary 
approach is then verified based on time responses of 
the resulting model in comparison to existing 
methods to demonstrate the effectiveness of the 
proposed approach.  
 
2. Problem of model reduction of discrete 
interval systems 
Consider the stable discrete-time system with 
interval uncertainties: 
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The problem can now be formulated to determine a 
desired rth-order stable model 
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  (2) 
so that the performance of the reduced model 

),,( dczGr  suitably approximates that of the original 
system ),,( bazG  in term of resemblance of discrete 
sequence energy.  
 
3. Discrete sequence energy (DSE) of discrete 
interval systems 
As a comparison basis, we need to evaluate the 
discrete sequence energy (DSE) for both the reduced 
and original interval models, respectively. 
 
3.1 Discrete sequence energy (DSE) of 
deterministic systems 

Discrete sequence energy of a sequence )(nTh , 
which plays a very important role in many control 
applications, is defined as: 
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In evaluating Eq.(3), Parseval’s theorem [15] states 
that sequence energy is related to a contour 
integration along the unit circle in a positive direction 
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where H(z) is the z-transform of the sequence h(nT). 
With a recursive algebraic algorithm [16], it is easy to 
compute the discrete sequence energy in Eq.(4). That 
is, for a discrete transfer function 
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A z
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where A(z) and B(z) are polynomials with real 
coefficients 
 

A(z)=a0zn+ a1zn-1+ ... +an , a0 >0       (6) 
 

B(z)=b0zn+ b1zn-1+ ... +bn                  (7) 
 

and A(z) has all its zeros inside the unit circle, we can 
obtain the discrete sequence energy as 
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where coefficients k

j
k
i banda  are recursively defined 

[16] as: 
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3.2 Discrete sequence energy (DSE) of 
interval systems  
For a discrete interval transfer function 
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where )(zA  and )(zB are polynomials with interval 
coefficients 
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The DSE of the discrete interval system ),,( bazH I  of 
Eq.(11) can be obtained via interval arithmetic 
manipulations. That is, if A(z) has all its zeros inside 
the unit circle and hI(nT) represents the impulse 
response of the discrete interval model ),,( bazH I

, we 
can obtain the discrete sequence energy as: 
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where coefficients ( ) ( ) ],[ +− k
i

k
i aa  and ( ) ( ) ],[ +− k

j
k
j bb are 

recursively defined as: 
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and 
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Similarly, the DSE of the reduced-order discrete 
interval model ),,( dczGr  of Eq.(2) can be obtained 
in exactly the same way. 
 
4. Model reduction of discrete interval 
systems based on DSE 
Figure 1 shows the framework of the GA-based 
model reduction scheme to derive a reduced model 

),,( dczGr  for the original system ),,( bazG  based on 
the closeness of discrete sequence energy (DSE) of 
the impulse responses between these two interval 
systems, in which [ ]+− αα ,  and [ ]+− ββ ,  stand for the 
lower and upper bounds of the DSE of the impulse 
responses for the original and reduced discrete 
interval models, respectively. 

The rationale of the proposed approach is to 
search for an optimal set of parameters for the upper 
and lower bounds of the uncertain coefficients of the 
reduced model ),,( dczGr  so that the objective 
functions 

−− −= βα1J            (17) 
++ −= βα2J          (18) 

are minimized. By doing so, the characteristics of the 
reduced-order discrete-time interval model ),,( dczGr  
approximates those of its original system ),,( bazG  if 
both objectives J1 and J2 are minimized. 

With the multiobjective problem presented in 
Eqs. (17)-(18), the simplest and natural way is to 
have it reformulated as a mono-objective 
optimization problem by means of an aggregating 
function of the form 

 
++−−

∈
∈
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Dd
Cc

     (19) 

 

where 0≥iw , i=1,2, are the weighting coefficients 
representing the relative importance of the objective 
functions [11]. Combining the objectives to obtain an 
optimized solution has the advantage of producing a 
single solution, because the design problem at hand 
requires no interaction with the decision making 
among the parameters derived by the proposed 
approach as far as the derivation of the reduced-order 
discrete interval model is concerned. 
 

( )zGr

( )zG DSE of the impulse
response

DSE of the impulse
response

GA

],[ +− αα
+

-
],[ +− ββ

 
Fig. 1  Framework of the GA-derived reduced interval model. 
 
5. Illustrated example 
Consider the discrete interval system given by [9] 
 

21 ]6.6,5.6[]8.8,7.8[]3,9.2[
]6.8,5.8[]35.10,15.10[)(

zz
zzG

++
+=  

 
The 1st order reduced model is 
 

z
zGr ]7452.2,6280.2[]1,1[

]8017.3,7929.3[)(1 +
=  

 
via multipoint Pade approximation as revealed in [9]. 

By using the proposed GA-based approach, we 
obtain the reduced model 

 

z
zGrga ]9350.3,8313.3[]9096.2,8851.2[

]6657.4,6474.4[)(1 +
=  

 
after 100 generations of evolution. The GA 
parameters adopted include a population size of 50, 
pc=0.8, pm=0.02. Tournament selection is used with 
a tournament size of 4. GA operators include 
two-point crossover and non-uniform mutation. 

For comparison purpose, Table 1 shows the 
DSE of various interval models of this Example. It is 
clear that the reduced-order model )(1 zGrga  derived 
via the proposed approach possesses exactly the same 
DSE as that of the original system ( )zG1 . The interval 
model )(1 zGr  derived via [9], however, has a serious 
deviation in terms of DSE from its original 
counterpart. Therefore, we expect better system 
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performance from the interval model )(1 zGrga
, in 

comparison to the interval model )(1 zGr . Figures 2-7 
show impulse and step responses of the respective 
interval models, which confirm the effectiveness of 
the proposed approach. 

To show the consistency of the evolution 
process, Fig. 8 illustrates the simulation results of the 
evolution process to derive the reduced-order interval 
model for 5 runs. As demonstrated in Fig. 8, 
satisfactory consistency of the evolution process can 
be obtained via the proposed GA-based approach. 

 
 

Table 1  DSE of various interval models. 
 

Discrete Interval Models Discrete Sequence Energy 

( )zG1  [3.0162  3.5038] 

)(1 zGr  [2.2010  2.4470] 

)(1 zGrga
 [3.0162  3.5038] 

 
 

 
Fig. 2  Impulse responses of the original discrete interval system 

)(1 zG . 
 

 
Fig. 3  Step responses of the original discrete interval system 

)(1 zG . 
 

 

 
 

Fig. 4  Impulse responses of the reduced-order discrete interval 
model )(1 zGr  in [9]. 

 
 

 
Fig. 5  Step responses of the reduced-order discrete interval 

model )(1 zGr
 in [9]. 

 
 

 
Fig. 6  Impulse responses of the reduced-order discrete interval 

model )(1 zGrga
 obtained via the proposed approach. 
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Fig. 7  Step responses of the reduced-order discrete interval 

model )(1 zGrga
 obtained via the proposed approach. 

 
 

 
Fig. 8  Evolution process to derive the reduced model )(1 zGrga

 

for 5 runs. 
 
 
6. Conclusions 
There are very few discussions on the derivation of a 
reduced-order interval model for uncertain 
discrete-time systems having interval uncertainties. 
Existing approaches did not provide satisfactory 
results in general. To facilitate the derivation process, 
this paper has presented a GA-based approach as a 
computationally simple yet practical way to obtain an 
optimal reduced model for high-order interval 
systems with least deviation of DSE from its original 
counterpart. In comparison to the available 
techniques, the GA-based model reduction approach 
provides satisfactory performance. Simulation results 
have demonstrated that the reduced model obtained 
via the proposed approach out-performs the existing 
methods in terms of time responses and discrete 
sequence energy. 
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