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Abstract: - Nondestructive testing techniques are of great relevance nowadays and are extensively employed in almost all 
areas of engineering to detect defects in products and structures, or to point out deteriorations in industrial plants. The paper 
deals with techniques which make use of transient ultrasonic waves, the aim being numerical modelling and simulation of 
their propagation in long cylindrical shell structures affected by axisymmetric defects and/or material inhomogeneities. For 
this purpose a finite element code has been developed by the authors, who have validated and utilized it to perform  
simulations, the results of which are presented and discussed. 
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1 Introduction 

In the last few decades, ultrasonic nondestructive 
testing (NDT) techniques have acquired more and more 
relevance, as is witnessed by the progressive successful 
widening of their field of application and by the increase in 
the accuracy and flexibility they offer. Nowadays they are 
routinely and extensively employed in a great number of 
different areas of engineering to detect and characterize 
defects or corrosion phenomena in products and structures, 
to monitor the degree of safety of critical parts of industrial 
plants, to evaluate the state of conservation of the historical 
and artistic heritage, and for many other uses [1], [2], [3], 
[4].  

There is therefore growing interest in developing 
accurate models to describe the transient propagation of 
ultrasonic waves through a variety of solid materials and 
structures which make up the various systems being 
investigated. Of course, these models then have to be 
implemented in robust numerical codes, typically finite-
element ones, so as to analyse these complex phenomena 
accurately and efficiently [5], [6].  

The aim of this paper is briefly to describe the 
formulation employed in the finite element code developed 
by the authors to simulate the propagation of transient 
ultrasonic waves in elastic linear media, and to present and 
discuss some preliminary results obtained by using the 
code; a validation of the code is also given. More 
specifically, attention is focused on the analysis of thin shell 
cylindrical structures, which are commonly used to model 
geometrically long pipes. Because of the presence of defects 
in the pipes inside which the propagation of ultrasonic 
waves has to be simulated, and owing to the extremely 
complex geometries of the real-world structures to be taken 
into account, it is essential to develop a finite element code 
able to carry out a fully tri-dimensional analysis which also 

allows inhomogeneities and/or anisotropies to be treated [7]. 
The paper is organized as follows. Sections 2 and 3 describe 
the mathematical and numerical formulation employed to 
develop the code; in Section 4 a validation of the code is 
given and some results of the simulations performed are 
presented and discussed in detail; finally, in Section 5 the 
authors’ conclusions are given. 
 
2 Mathematical Formulation 
 According to the relevant literature [8], [9], [10], we study  
the propagation of ultrasonic waves in solids by means of 
the displacement vector u. In an isotropic homogeneous 
medium, under the standard assumptions of linear elasto-
dynamics theory and the absence of viscosity, the governing 
equation is: 

              uρfµ∆uuµ)(λ &&=++⋅∇∇+ v  ,           (1) 
 

where fv is the body force, λ and µ are the Lamé constants, 
ρ is the volume mass density and the dots denote the 
second-order time derivative .  

Equation (1) has to be solved in a bounded domain Ω 
with boundary ∂Ω =∂Ωg∩∂Ωm on which an assigned dis-
placement u⏐∂Ωg=ug (Dirichlet or geometrical condition) 
and/or an assigned traction f⏐∂Ωm=fm (Newmann type or 
mechanical boundary condition) have to be imposed on the 
boundary; the initial conditions u0=u(P,0) ů0=ů(P,0) must  
also be specified in each point P of Ω. 

Making use of u it is then possible to compute the 
strain tensor ξij i,j=1,2,3 in rectangular Cartesian 
coordinates as [8]: 
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Equation (1) can be derived by imposing a vanishing first-
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order variation δ(1)F of the following functional F(u,t):  
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of the body [11]. Starting from (3) it is straightforward to 
write δ(1)F as: 
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Note that in deriving (4) the variation δu(P) of u has to be 
considered as time-independent. Then, by means of (2) it is 
easy to deduce the following expression for δwe, which will 
be used in the next section: 
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In fact, as 
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through some algebraic manipulations expression (6) is 
deduced. Of course, making use of standard calculus tools, 
expression (4) can be recast in such a way as to prove that 
the stationary of (4) occurs when the solution of the 
boundary/initial value problem (1) is considered [11].  

 
3 Numerical Formulation 

In order to solve the boundary/initial value problem (1) 
numerically, we adopt a finite-element semi-discretization 
procedure in which the Raylegh-Ritz variational method is 
employed to discretize the problem spatially with respect to 
the Cartesian coordinates x1, x2 and x3, whereas a direct 
integration method is used to carry out the time-history 
analysis [12], [13]. Making use of this approach, a system 
of linear second-order coupled differential equations of the 
form: 

 

                          nnn RKuuM =+&&                                    (8) 
 
is derived, where un=u(n∆t) and ün=ü(n∆t) are the vectors 

containing the (unknown) nodal values of the displacement 
vector u and of the acceleration vector ü, respectively; M 
and K are two square matrices, the former called the 
consistent mass matrix and the latter the stiffness matrix; Rn 
is the vector of known terms, its entries coming from both 
the boundary/initial conditions and the body (weight) force 
(however, in the present case, the contributions to Rn arising 
from the body force and the mechanical boundary condi-
tions were discarded, as the influence of the former is quite 
negligible in the current context, and the latter does not 
concern the analysis being performed; in our formulation, 
therefore, Rn is only due to the inhomogeneous Dirichlet 
boundary/initial conditions and it is built by rearranging the 
known terms in the space-discretized equations by the 
standard per-element FEM assembly procedure); the integer 
n specifies the number of time iterations; and, finally, ∆t is 
the size of the time step of the time integration scheme 
adopted, details of which will be given below.  

Let us now consider the criteria we adopted to number 
the equations and the unknowns of (9). Since the cardinality 
of the vectors, as well as the order of the matrices present in 
(9) is 3N, N being the number of nodes in the finite-element 
mesh with unknown displacement, each index h of a row in 
these arrays and each index k of a column (if any) can be 
written as h=3(p-1) +i and k=3(q-1) +j, where p and q 
specify a pair of nodes and i and j a pair of components, 
respectively: for example, the entry (M)hk stands for the 
coefficient of the j-th component of the (unknown) 
displacement vector at the node q in the equation of the i-th 
component of the (unknown) displacement vector at node p.  

As regards the expression of the entries of M and K, 
the first step in order to derive them is to expand the 
components of u, ü and δu in terms of scalar shape 
functions αp: 
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N’ being the total number of nodes and l=3(p-1)+j, and then 
to introduce the expansions (9a), (9c) and (9d) into 
expression (5). However, in this way, in the fourfold sum 
over the indices i, j, p and q thus obtained both (δU)h and 
(δU)l appear. In order to transform it in such a way that only 
(δU)h appears, in the part of this sum containing (δU)l, 
which comes from the expansion of the first term on the 
right-hand side of (7b), it is necessary to exchange the 
indices i→ j and j→i; in fact, by so doing the index l 
transforms to h, and (δU)l becomes (δU)h; note that by this 
exchange the index k takes the new value m=3(q-1)+i and 
thus some terms containing (U)m appear in the sum. After 
this, the following expression is deduced: 
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By imposing the stationary of functional (4) and taking into 
account the arbitrariness of (δU)h, one deduces from 
inspection of (10) an expression for the entries of K: 
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In a similar way, discretizing the dynamic term -ρü in 
(4) by means of the expansion (9b), the expression for M is 
deduced: 

 

       ( ) ( ) ji0j,iααρ hkΩ p ≠=== ∫ MM qhk ;         (12) 
 

note that in the last two expressions the nodes p and q have 
be considered as belonging to the same finite element; 
moreover, by inspection it results from (11) and (12) that 
the matrices K and M are both symmetric.  

In the literature there are a number of methods to carry 
out the time integration of equation (8), and after careful 
examination we decided to use the standard central-
difference method, for two main reasons [12]. Firstly, in the 
absence of dissipative effects, leading to the appearance of a 
first-order time derivative term in equation (8), and thus of a 
damping matrix, the method can be made explicit by 
diagonalizing the consistent mass matrix M by means of an 
effective and accurate lumping scheme, such as the HRZ 
one [12]; in this way, the disadvantage of the method being 
conditionally stable, thus requiring a sufficiently small time 
step to guarantee the numerical stability of the procedure, is 
widely compensated for by the conspicuous decrease in the 
computational effort needed to compute u, since it is no 
longer necessary in such a case to solve a linear algebraic 
system of a high order at each time iteration step. Secondly, 
the method is robust, second-order accurate and easy to 
implement.  

Applying the central-difference method to equation 
(8), the following linear algebraic system is obtained [12] 
       ( ) ( ) ( )1

22
1 2 −+ −+∆−∆= nnnnn tt uuMKuRuM  (13);  

 

then, making use of the HRZ mass lumping technique, a 
diagonal matrix M’ is derived; its entries are computed by 
scaling those of M lying on its main diagonal by means of a 
per-element algorithm which preserves the global mass of 
the element [12]. After this, substituting M with M’ in (14), 
and solving with respect to un+1, the following relationship 
is deduced: 
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which was employed to compute iteratively un+1. However, 
the computation of u1 from (14) requires knowledge of the 
starting value u-1 which is related to the initial values u0, ů0 
and ü0 by the following second-order approximate power 
series expansion 

                         ( ) ( ) 0
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001 2
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By assuming u0=0 and R0=0 it results from (8) that ü0 is 
zero, so that having assigned ů0=0 in our computations, it 
follows that u-1 is also zero; as a consequence of this, u1 
vanishes.  

The stability of the central-difference method requires 
the following inequality to hold: 
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where ωmax is the highest natural frequency of the equation 
det(K-ω2M’)=0. In order to avoid the drawback of the great 
effort required by the direct numerical computation of ωmax, 
it is common to evaluate an upper bound by making use of 
Gerschgori’s theorem [12] which, for lumped mass matrices 
M’, states that: 
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where i=1, 2, …, ne, and ne is the number of degrees of 
freedom per element.  
 
4 Description of the Results 

On the basis of the formulations described in the 
previous sections we worked out an FEM code for analysis 
of the propagation of transient ultrasonic waves in elastic 
structures. Actually, this code is only a module of the much 
larger and more powerful FEM research code ELFIN, 
which has been developed by the authors and their 
colleagues at the University of Catania over the last twenty 
years, for the computation of electromagnetic fields in 
almost all areas of electrical engineering [14].  
In order to validate our code, it was decided to compare the 
results obtained by means of ELFIN with analogous ones 
derived by making use of the commercial FEM code 
ANSYS.  
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FIG. 1 – FINITE ELEMENT MESH, DEFECT AND OBSERVATION POINT P. 

 
 
The structure taken into consideration was a pipe 

modelled geometrically as a homogeneous hollow cylinder 
with thickness t=5,5 mm, outer radius ro and inner radius ri 
of 43,0 mm and 37,5 mm respectively, and length l=500,0 
mm; the material was steel of type 715 whose parameters of 
interest have the following values: modulus of elasticity E = 
215,80 GN/m2, Poisson’s ratio ν = 0,30 and volume density 
ρ = 7847,09 kg⋅/m3; for the sake of completeness, the values 
of Lame’s constant λ and µ are also given: λ = 124,50 
GN/m2 and µ = 83,00 GN/m2.  
A defect was introduced into this structure, consisting of  a 
rectangular shaped notch. It was centred at point D with 
polar coordinates (42,05 mm, 180°, 350,00 mm) with 
respect to the right-hand side cylindrical reference frame, 
with the origin in the centre of an end of the pipe and the z-
axis directed inwards. As regards the notch size, it extends 
outwards in the radial direction for half of the pipe’s 
thickness, that is to say by 2,75 mm, in the axial one by 10,0 
mm, and in the circumferential direction it covers an 
extension of 10° (see Figure 1). 

In the computations performed by means of the ELFIN 
code the structure was discretized by a regular first-order 
tetrahedral mesh; the number of subdivisions along the 
radial, axial and circumferential direction is 2, 100 and 72 
respectively, which guarantees an adequate spatial resolu-
tion. The presence of the defect was modelled by deleting 
the finite elements inside the notch; in this way the mesh  
contains 21.815 nodes and 71.980 finite elements. 

On the surface of the pipe a vanishing mechanical 
boundary condition was imposed everywhere, except for the 
72 nodes belonging to the external circumference lying on 
the plane z=0, where a Dirichlet boundary condition, 

modeling the action exerted by the piezoelectric transmitter 
on the pipe, was applied: so the global number of degrees of 
freedom was 65.229. This action was taken into account by 
imposing an identical displacement vector on each of these 
nodes, having only the circumferential component other 
than zero; the time dependence of this component was a 
sinusoidal signal modulated in amplitude by a Hanning 
window of six oscillations with the following waveform: 

 

         )2/2(sin)2sin()( 2 nftftAtf ππ ⋅=  0≤t≤t0        (18) 
 

where the amplitude A is 1 mm, the modulation frequency f 
is 55 kHz and the integer n is 6. The overall duration of the 
signal t0 is 109,1 µs; outside this time interval the waveform 
is assumed to be identically zero.  

The above boundary/initial conditions were chosen 
because in an infinite-length thin shell cylinder they would 
only generate the torsional mode, denoted in the literature as 
T(0,1), which propagates in a non-dispersive way with a 
velocity of 3,250 km/s [9], [15].  

As regards the simulations performed by means of the 
ANSYS code, the discretization employed was exactly the 
same as that just described, except for the finite elements 
adopted, which were eight-node bricks.    

A crucial parameter of the simulations was the 
minimal time step required by the stability of the explicit 
numerical integration scheme. The upper bound of the time 
step  computed  according to (16) was 228 ns. The analyses 
were performed taking into consideration an overall 
duration of 300 µs. 

Figure 2 gives the values versus time of the 
circumferential component of the displacement vector 
obtained by ELFIN at a point P having coordinates (43,00 

 

D
P 
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mm, 180°, 200,00 mm) in the absence of the defect. In this 
figure, the wave generated by the transmitter (direct wave), 
followed after 78 ns by another wave of identical amplitude 
produced by the reflection of the direct wave by the 
opposite end of the pipe, is clearly recognizable; it is worth 
noticing that, as expected, the amplitude of the reflected 
wave is identical to that of the transmitted one owing to the 
lack of dissipative phenomena in the model.  

Moreover,  although  it is not graphically shown, the  
numerical computations confirmed that the other two 
components, the radial and the axial ones, are several orders 
of magnitude less than the circumferential one, so they are 
quite negligible. The wave propagates at a velocity of about 
3,150 km/s, which is in good agreement with the evaluated 
velocity [9]. 

Figure 3 shows the circumferential component of the 
displacement vector at point P versus time in the presence 
of the defect: the dotted line refers to the analysis carried 
out by means of the ANSYS code, whereas the continuous 
line refers to that performed by means of the  ELFIN code.  

By inspection of Figure 3, it is quite evident that the 
two simulations are in excellent agreement with each other, 
so it can reasonably be stated that ELFIN was successfully 
validated.  

Moreover, the most relevant difference with respect to 
the results obtained in the previous analysis consists of the 
presence of a third wave, between the direct and the 
reflected wave, originated by reflection from the defect and 
having a reduced amplitude with respect to the other two: 
this difference may be a promising starting point in order to 
identify defects. 

5    Conclusions 
In the paper we have presented the results of numerical 

computations carried out by means of a module of the large 
FEM research code ELFIN, specifically developed by the 
authors to analyze the propagation of ultrasonic waves in 
solid elastic media in the context of the NDT technique. The 
code has been validated and its results discussed in detail. In 
the near future we intend to make changes to the code so as 
to reduce considerably the computation time currently 
required.  
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FIG. 2 - CIRCUMFERENTIAL COMPONENT OF THE DISPLACEMENT  

   VECTOR AT POINT P IN ABSENCE OF DEFECT 
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FIG. 3 - CIRCUMFERENTIAL COMPONENT OF THE DISPLACEMENT VECTOR AT POINT P IN  PRESENCE OF DEFECT:  

ANSYS DOTTED LINE, ELFIN CONTINUOUS LINE. 
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