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Abstract: - In neural network the connection strength of each neuron is updated through learning. Through 
repeated simulations of crisp neural network, we propose the idea that for each neuron in the network, we can 
obtain reduced model with more efficiency using wavelet based multiresolution analysis (MRA) to form 
wavelet based quasi fuzzy weight sets (WBQFWS). Such type of WBQFWS provides good initial solution for 
training in type-I fuzzy neural networks thus the search space for synoptic connections is reduced 
significantly, resulting in fast and confident learning of fuzzy neural networks. As real data is subjected to 
noise and uncertainty, therefore, WBQFWS may be helpful in the simplification of complex problems using 
low dimensional data sets.  
 
Key-Words: - crisp neural networks, wavelets based multiresolution analysis (MRA), extraction of fuzzy rules, 
fuzzy neural network (FNN), wavelet based quasi fuzzy weight sets (WBQFWS), density estimation 
techniques.) 
 
 
1   Introduction 
Fission of artificial neural networks and fuzzy 
inference systems have attracted the growing 
interest of researchers in various scientific and 
engineering areas due to the growing need of 
adaptive intelligent systems to solve the real world 
problems. A crisp or fuzzified neural network can be 
viewed as a mathematical model for brain-like 
systems. The learning process increases the sum of 
knowledge of the neural network by improving the 
configuration of weight factors. FNN are 
generalization of crisp neural networks to process 
both numerical information from measuring 
instruments and linguistic information from human 
experts, see [3], [18], and [21]. Thus, fuzzy 
inference systems can be used to emulate human 
expert knowledge and experience. An overview of 
different FNN architectures is discussed by [7], [10] 
and [19]. It is much more difficult to develop the 
learning algorithms for the FNN than for the crisp 
neural networks; this is because the inputs, 
connections weights and bias terms related to a 
regular FNN are fuzzy sets, see [21]. The new 
technique in mathematical sciences called wavelets 
can be introduced to reduce the problem complexity 
as well as the dimensions so that a FNN may 
provide a fast track for optimization. Wavelet based 
MRA provides better analysis of complex signals 

than Fourier based MRA as in [9] and [17]. 
The paper is organized as follows. In 

section II, we made a short study of learning 
procedures in crisp neural networks. In section III, 
we present concepts of fuzzy logic as our target 
work and later in section IV wavelet based MRA is 
introduced. In section V, simulation experiments are 
presented. These sets provide the initial design for 
type-I neuro-fuzzy networks as discussed by [1] and 
[6]. To our knowledge, the concept of obtaining 
WBQFWS through crisp neural networks has not 
been investigated in the literature. 
 
 

 2   Neural Networks 
A neural network can be regarded as representation 
of a function determined by its weight factors and 
networks architecture [5]. The overall mapping is 
thus characterized by a composite function relating 
feedforward network inputs to output. For p-layer 
feedforward network, we have  
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Usually, we train a neural network with a 
training set, present inputs to the neural networks, 
and interpret the outputs according to the logical 
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rules in the training set see [2], [4] and [22]. The 
most commonly used technique to adjust weight 
parameters of a neural network is backpropagation 
method based on LMS learning defined as  
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where k= number of output neurons. Where  
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η  is the learning rate and ( )nl

jδ  is the local change 
made at each neuron in the learning, see [15]. But to 
deal with noisy and uncertain information, a crisp 
neural network has to use concepts of fuzzy 
inference systems [24] that will be discussed in the 
next section. 

 
 

 
 
 
3   Fuzzy Logic 
Fuzzy logic was originally proposed by Prof. Lotfi 
A. Zadeh to quantitatively and effectively handle 
problems involving uncertainty, ambiguity and 
vagueness see [14], [17] and [25]. The theory which 
is now well-established was specifically designed to 
mathematically represent uncertainty and vagueness 
and provide formalized tools for dealing with the 
imprecision that is intrinsic to many real world 
problems. The ability of fuzzy logic is inherently 

robust since it does not require precision and noise-
free inputs. Fuzzy inference systems are the most 
reliable alternative if the mathematical model of the 
system to be controlled is unavailable see [15]. The 
fuzzy sets and fuzzy rules can be formulated in 
terms of linguistic variables. Methods of fuzzy logic 
are commonly used to model a complex system by a 
set of rules provided by the experts. But fuzzy rules 
can also be applied in reverse problems: given the 
input-output behavior of a system, what are the rules 
which are governing the behavior. We cite definition 
of quasi fuzzy sets,  

A quasi-fuzzy number A is a fuzzy set of 
the real line with a normal, fuzzy convex and 
continuous membership function satisfying the 
following conditions, 

 
( ) 0)lim( =−∞→ tt A , ( ) 0)lim( =∞→ tt A

( ) ( )γγ Amin=la , ( ) ( )γγ Amax=ra      (1)
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Then ( ) ( )[ ]γγγ

rl aa ,=A . The support of A is the 
open interval ( ) ( )( )γγ rl aa , . 

In order to reduce computational expense, 
we use triangular fuzzy numbers to define the fuzzy 
weights. The Wavelet based quasi fuzzy weight sets 
(WBQFWS) follow fuzzy arithmetic rules, and thus 
can be used for learning of fuzzy neural networks. 
 
 
4   Wavelet Based Multiresolution 

Analysis 
In recent years, researchers have developed 
powerful wavelet techniques for the multi scale 
representation and analysis of signals [8], [9] and 
[17. These new methods differ from the traditional 
Fourier techniques. Wavelets localize the 
information in the time-frequency space which 
makes them especially suitable for the analysis of 
non-stationary signals [16]. One important area of 
application where wavelets have been found to be 
relevant is fuzzy neural systems as discussed in [10] 
and [14]. This whole area of research is still 
relatively new but is evolving very rapidly. We 
examine the very important property of wavelet 
transformation i.e. maximization of signal energy 
using data compression for FNNs. There are 
essentially two types of wavelet decompositions, 
Continuous Wavelet Transform (CWT) and Discrete 
Wavelet Transform (DWT), see [12], [16] and [20]. 
Continuous wavelets are usually preferred for signal 
analysis, feature extraction and detection tasks 
whereas the second type is obviously more adequate 
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Fig.1. Structure of a crisp artificial neural 
network 
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whenever it is desirable to perform some kind of 
data reduction or when the orthogonality of the 
representation is an important factor see [9]. 
However, the choice between them is optional 
depending upon the computational considerations. 
We will use the decomposition in terms of DWT 
using Mallat’s pyramid algorithm which is faster 
than a CWT and obtained very satisfactory results 
see [17] and [20]. 
Let f (t) be a signal defined in ( )RL2   space, which 
denotes a vector space for finite energy signals, 
where R  is a real continuous number system. The 
WT of f (t) in terms of continuous wavelets is then 
defined as 
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( )tψ  is the base function or the mother wavelet with 

Rba ∈,  are the scale and translation parameters 
respectively. Instead of continuous dilation and 
translation, the mother wavelet may be dilated and 
translated discretely by selecting maa 0=  and 

manbb 00= , where 0a  and 0b  are fixed values 
with 10 >a , 00 >b , Znm ∈, and Z  is the set of 
positive integers. Then the discretized mother 
wavelet becomes 
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and the corresponding discrete wavelet transform is 
given by 

( ) ( ) ( )dtttffnmfDWT nmnm ,,,, ψψψ ∫
∞
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(4)        
 
DWT provides a decomposition and reconstruction 
structure of a signal using MRA through filter bank 
[9]. The roles of mother scaling and mother wavelet 
functions ( )tφ  and ( )tψ  are represented through a 
low pass filter L and a high pass filter H. 
Consequently, it is possible to obtain a 
signal f through analysis and synthesis by using 
wavelet based MRA, see [20]. 
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where the sum with coefficients npc ,  represents 
scaling or approximation coefficients and sums with 
coefficients nmd ,  represent wavelet or detail 
coefficients on all the scales between 0 and p . Data 
compression and energy storage in wavelets can be 
achieved by simply discarding certain coefficients 
that are insignificant.  We combine this property of 
wavelets with neural networks and found a special 
class of mother wavelets db4, the most appropriate 
based on our data. We studied the effect of crisp 
weights on different neurons by reducing them using 
wavelets according to their energy preservation.  
 
 
5    Experiment 
The input/target pair presented to the network is 
{ }t,X  where [ ]54321 ,,,, xxxxx=X . A crisp neural 
network with 3 hidden and one output neuron is 
trained and repeated the simulations for first 128 
successes. Through wavelet decomposition, we 
reduced dimensions by preserving 95% of the 
energy of original signal. The decomposed signal at 
level 5 using db4 wavelets for one of the input 
weight- vectors is shown in fig. 2.(a), and its 
compressed version along with original signal in fig. 
2. (b). 
 

  
 

Fig. 2. (a) Signal decomposition (b) original 
and compressed signals 

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp210-216)



 
We have used a threshold of 0.05 for the 
compression of signal, thus reducing the data 
dimensionality up to 50%. So that in place of high 
data requirements of QFWS in [1], we may have 
better performance using WBQFWS. The triangular 
membership function is constructed due to its 
reduced complexity see [23]. From fig. 1, the 
parameters of triangular-mf based WBQFWS using 
eq.1 will be,   
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1,1war =  ,
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2
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In table.1, results of WBQFWS provide superior 
mapping of weight space obtained using repeated 
simulations of crisp neural network than 95% 
Gaussian confidence internal.  Interesting to note 

that the first two moments are nearly similar in 
WBQFWS showing consistency of proposed 
interval sets but not in the case of Gaussian based 
intervals. When each of the 100 simulated values of 
weights are validated for significance then we 
observe considerable differences in the prediction 
capacity of two types of interval sets. The Gaussian 
based intervals are underestimating the values of 
table.1, but not in the case of WBQFWS. In 
validation process, the proposed WBQFWS 
provides more accurate bound (above 99% 
significant close sets) as compared to 95% Gaussian 
confidence intervals (less than 93% close sets) as 
show in table 3. 
 

 
Conclusion 
Learning with compressed wavelet neural networks 
using fuzzy weights will be efficient and higher level 
of generalization can be obtained with shorter 
computing time as compared to existing FNNs. We 
described the architecture of WBQFWS based FNNs 
that provide better initial search. neuro-fuzzy learning 
with fuzzy weights requires initialization of an 
interval based fuzzy sets, which require higher 
computing than for crisp learning to deal with 
uncertainty, vagueness and linguistic behaviors of 
some real life situations see [13], [24] and [26]. 
Results showed that less than 1% chance of bound 
independent values is possible, thus providing above 
99% accurate mapping, in comparison with Gaussian 
bounds that are less than 93% accurate. 
Secondly, from [11] and [21], each hidden weight 
connection of neurons lies approximately in the 
interval 
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Table 1 
A comparison of WBQFWS with 95% Gaussian confidence intervals 

(a) Wavelet based fuzzy weight sets (b) 95% Gaussian confidence interval Weight position 
(from fig. 1) Min Max Mean S. E. Confidence Bound Mean S. E. 

W1(1,1) -1.9205 3.0983 -0.0637 0.8606 -1.5256 1.4032 -0.0612 0.8903
W1(2,1) -1.3789 3.3606 -0.0447 0.8025 -1.3914 1.3065 -0.0424 0.8201
W1(3,1) -2.0946 3.1390 -0.1147 0.8544 -1.5654 1.3390 -0.1132 0.8829
W2(1,1) -2.9017 3.2209 0.26124 1.2035 -1.8234 2.3362 0.2564 1.2644
W2(1,2) -1.9873 3.1346 0.1987 1.0948 -1.6512 2.0429 0.1959 1.1229
W2(1,3) -2.2610 2.9249 0.3128 1.0381 -1.4537 2.0798 0.3130 1.0741

 

Fig.3. Wavelet based weights and corresponding 
triangular MF 
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Table 3 
Number of insignificant WBQFWS and Gaussian  

confidence interval  
(in 100 simulations for validation) 

Weight position  
(from fig. 1) WBQFWS 95% Gaussian C.I

W1(1,1) 1 5 
W1(2,1) 1 2 
W1(3,1) 1 7 
W2(1,1) 0 7 
W2(1,2) 0 13 
W2(1,3) 0 13 

Deficiency 0.43% 7.8% 
Accuracy through 

validation 99.57% 92.2% 

 
and our proposed set in eq. (5) provides little large 
interval to search for weights of hidden part of a FNN 
with above 99% accuracy. 
 
 

 
 

Future work 
Further improved identification of suitable 
membership function is possible by determining the 
underlying probability structure of synaptic 
connections of a crisp neural network using non-
parametric statistics. Thus based on this idea, we can 
form fuzzy inference systems with varying rules 
based on neuron complexity. This may provide new 
research directions to compare different WBQFWS 
based FNNs. A comparison for most suitable 
wavelet and optimization algorithms with varying 
learning parameters is also possible. As future work 
we will extend this concept on type-II fuzz logic 
systems as worked by [15]. 
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