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Abstract: An intrusion detection system (IDS) is generally limited by having a single detection model and a 
single information source for detecting attacks. Multi-sensor (or meta) intrusion detection addresses this 
problem by combining results of multiple IDSs and providing global decisions. Nearly all current meta-IDSs 
are either statistics-based or logical rule-based and typically require substantial human involvement for setup.  
This paper reports two experiments that employ a case-based reasoning (CBR) approach, one using the well-
known 1998 DARPA datasets, which contain a variety of different types of attacks, and one using the 2000 
DARPA datasets, which contain distributed denial of service (DDOS) attacks.  A critical issue with meta-IDS 
is alert correlation: determining when alerts from the various sensors are generated by the same attack. The 
first experiment uses explicit alert correlation based on session information contained in the alerts. In addition, 
it avoids human involvement in setup by employing data mining techniques to generate the case library 
automatically from training data. The results show that the CBR approach is very effective in distinguishing 
false alerts from real attacks, and in many of the latter cases can correctly identify the type of attack. The 
second experiment applies CBR to achieve a kind of implicit alert correlation. Explicit correlation is not 
possible here, since DDOS attacks span multiple network sessions. Here again the approach has proven 
effective. For the second experiment the case library is derived directly from the training data without data 
mining techniques. 
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1   Introduction 
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Although intrusion detection has been explored for 
more than two decades, current methods still suffer 
from large numbers of false reports. The typical 
intrusion detection system (IDS) not only tends to 
generate a large number false alerts (false positives), 
but it can also miss some attacks (false negatives). 
This high volume and low quality of alerts make it 
difficult for human users of such systems to 
determine when an attack is taking place and how to 
respond.  

Two primary factors contribute to false reports. 
One is the imperfection of detection techniques. 
Intrusion detection techniques can be roughly 
classified as either misuse detection or anomaly 
detection. Misuse detection works from signatures 
of known attacks; hence it cannot detect new attacks 
(produces fales negatives). Anomaly detection looks 
for abnormal behavior, and is criticized inasmuch as 
the training data cannot be guaranteed to be either 

clean or thorough (so that it produces false 
positives). The other factor is the limitation of using 
a single information source. Some attacks span 
multiple hosts, operating systems, applications, and 
network sessions. The complete evidence of such 
attacks can only be attained by investigating 
multiple information sources and combining their 
results.  

An IDS is also referred to as a sensor (and 
sometimes an analyzer). The concept of a multi-
sensor (or meta) IDS comes from the idea of 
cooperation among multiple IDSs. A meta-IDS 
detects attacks by studying the results from other 
IDSs, where these sensors are deployed at different 
locations in a network. Because sensors may apply 
complementary detection approaches and work on 
complementary information sources, the meta-IDS 
potentially has the ability to make more 
comprehensive decisions. The main task of a meta-
IDS is to correlate alerts, i.e., to determine when 
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alerts from the various sensors arise from the same 
attack.  This is necessary in order to generate global 
alerts and discard false ones. Accordingly, alert 
correlation has become one of the key issues in this 
field, and any meta-IDS has to rely on some alert 
correlation approach.  

In this paper, we present case-based reasoning 
(CBR) techniques for meta intrusion detection. In a 
CBR system, the expertise is recorded in a library of 
past cases rather than, e.g., being encoded in a set of 
if-then rules. In general, a case is given as a 
problem-solution pair. In the present application, a 
problem is described as a pattern of alerts from the 
various IDSs that has in the past been known to 
occur during some attack, and a solution is given as 
the name of the attack together with a prescribed 
response, such as raise an alert or take some 
appropriate action. The CBR system contains a 
library of such cases. Then, when a pattern of alerts 
is observed in the system being protected, this 
pattern is matched against the patterns in the case 
library based on a similarity measure. If the most 
similar case found is sufficiently similar, then this 
indicates that the attack is real (not a false alert) as 
well as the nature or name of the attack. 

Two experiments were conducted to validate 
this CBR approach, one using the well-known 1998 
DARPA datasets, which contain a variety of 
different types of attacks, and one using the 2000 
DARPA datasets, which contain distributed denial 
of service (DDOS) attacks [6]. Both experiments 
used two well-known sensors: Snort [9], a network-
based IDS that monitors the packets entering and 
leaving a network, and STIDE [2, 3], a host-based 
IDS that monitors the system calls on a single node 
in a network 

The experiments may be distinguished by the 
manner in which they deal with alert correlation. 
One relies on the availability of session information 
(source and target IP addresses and ports) in the 
alerts from the various sensors. We call this explicit 
alert correlation. It applies here inasmuch as it can 
be assumed that each attack occurs within one 
session. Snort alerts contain session information, 
extracted directly from the packets. STIDE does not 
provide session information, but its input stream of 
system calls can be preprocessed to obtain this. 
Explicit correlation facilitates the CBR process 
inasmuch as it allows one to gather together all the 
alerts generated by all the sensors in the current 
network session and then treat this collection of 
alerts as a pattern that can be matched against the 
cases in the library. If the pattern recorded in some 
case in the library is sufficiently similar, this is taken 

to mean the attack represented by the case has 
occurred 

The other alert correlation method applies when 
the session information is unavailable or is 
otherwise insufficient for correlation. In the present 
case, even though session information can be made 
available it would not be useful, since DDOS attacks 
can span multiple sessions. Our method takes the 
current pattern of alerts gathered from the sensors 
within some time frame and compares this pattern 
with the cases in the library. For each case, those 
alerts that match alerts in the current pattern to some 
specified degree are extracted and assembled 
together to form a new pattern. The similarity of this 
new pattern with the pattern of the original case is 
then computed, and if this similarity degree is large 
enough, it is assumed that the current pattern 
represents a new occurrence of the same attack as 
described by the original case. Thus here alert 
correlation is achieved as part of the CBR process. 
We call this implicit alert correlation. 

Another way in which the two experiments may 
be distinguished is in terms of how the case library 
is constructed. For purposes of the first experiment, 
a method was developed that applies data mining 
techniques to construct the case library 
automatically from historical data. This effectively 
eliminates the need for human involvement. The 
method is comprised of three steps. First, training 
data is input to the sensors, and some initial cases 
are generated according to labeled information in 
training data. Second, a clustering algorithm is 
applied to group the initial cases. Third, from each 
clean cluster a representative is selected to serve as a 
case in the case library. In the second experiment, 
the case library can be derived directly from the 
training data without data mining techniques.  

In this research, all alerts are represented in the 
Intrusion Detection Message Exchange Format 
(IDMEF) [1], an XML representation that is 
becoming increasingly accepted as a standard alert 
format.  Then an alert pattern is represented as an 
XML document containing a collection of such 
IDMEF alerts. In addition, a case in the CBR library 
is represented in XML, where the problem part of 
the case adopts this same XML alert pattern 
representation.  

 
 

2  Case-Based Reasoning 
 
In case-based reasoning systems, the expertise is 
embodied in a library of past cases. This may be 
contrasted with systems where the knowledge is 
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encoded as a set of if-then rules. A case consists of 
the description of a problem and its solution. The 
knowledge and reasoning process used by the 
experts to solve the problem is not recorded, but it is 
implicit in the solution. 

In general, a CBR system works as follows. A 
problem is recieved from the environment and 
represented in a proper format. It is compared with 
cases in the case library. A similarity measure is 
applied to find the most similar case. That case is 
returned and used to suggest a solution for the 
current problem. Some feedback from the 
environment tells whether the given solution is good 
for the problem. If the solution is not good enough, a 
new case including the revised solution is created 
and entered into case library for future reference.  

The present application uses only the case 
matching and retrieval components of CBR and does 
not contribute new cases to the library. The software 
implementation uses our own adaptive case-based 
reasoning framework, previously reported in [8].  
 
 
3  Cases and Problems in Meta Intru-

sion Detection 
 
Cases and problems have to be clearly defined for a 
specific domain where CBR is applied. Our domain 
is meta intrusion detection. For this we define a 
problem as a potential attack. The collection of 
alerts generated from different sensors during the 
attack constitutes the description of an attack (or a 
problem). Since an alert is an XML object, in order 
to facilitate the aggregation of alerts, a problem is 
also represented in XML. The alerts comprising a 
problem are organized according to the sensors that 
produced them, and alerts from the same senor are 
sorted in chronological order. A case consists of the 
description of an attack and its solution. Figure 1 
shows the representations and structures of a case, a 
problem, and an alert. 

An XML representation of an object is 
inherently different from the attribute-value 
representation applied by conventional CBR 
systems. In an attribute-value representation, an 
object is described by a fixed number of attributes 
(attribute names and attribute values). Although the 
attribute-value representation is popular and used in 
a number of knowledge systems, it has a limitation 
when describing complex objects, such as trees. An 
XML document is a tree structure. If an XML object 
is transformed into a set of attributes, some 
information in it may be lost. Thus, in our approach, 
data analysis is performed directly over the alerts, 

given as XML objects, rather than working on a set 
of attributes extracted from the original alerts. 

. 
<Case> 

  + <Problem>

  + <Solution>

</Case> 

<Problem> 

  <Sensor id =“…”> 

    + <IDMEF-Message> 

    + <IDMEF-Message> 

… 

  </Sensor> 

  <Sensor id =“…”>  

    + <IDMEF-Message> 

    + <IDMEF-Message> 

…  

  </Sensor> 

</Problem> 

<IDMEF-Message> 

  <Alert> 

    + <CreateTime> 

    + <Source> 

    + <Target> 

    + <Classification>

    …  

  </Alert> 

</ IDMEF-Message > 

 
 

Figure 1. The XML representations 
of a case, a problem and an alert. 

 
 
4 An XML Similarity Measure 
 
Distance measures are used extensively in data 
mining and other types of data analysis. Such 
measures assume it is possible to compute for each 
pair of domain objects their mutual distance. Most 
distance measures work with attribute-value 
representations of the domain objects. In our work, 
however, since all objects (alerts, problems, and 
cases) are given in XML, is is more convenient to 
define a similarity measure that works directly with 
these XML representations. This led us to devise a 
general measure for the distance between two 
arbitrary XML documents, the details of which can 
be found in [5]. Briefly, it works as follows.   

An XML document is a collection of XML 
elements organized in a tree structure in which there 
is one root element. An XML element can be 
represented as 3-tuple [e, A, E] where e is the name 
of the element, A is the attribute set of the element 
and E is the sub-element set of the element. An 
XML attribute consists of an attribute name and an 
attribute value. In case an XML element has content, 
its content is moved into a new attribute whose 
name is the element name and whose value is the 
content of the element content. An XML document 
obtained by moving the contents into attributes is 
called content-free. Each XML element has a sub-
element set (which will be empty if the element is a 
leaf), and any element in that set will in turn have its 
own sub-element set, and so on. Thus the 
hierarchical organization of the original XML 
document is preserved in the 3-tuple representation.  

Given two elements [e1, A1, E1] and [e2, A2, E2], 
their distance is given as (dis(A1,A2)+dis(E1,E2))/2, 
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if e1=e2, otherwise, it is the maximal value 1, where 
dis(A1,A2) is the distance between their attribute sets 
and dis(E1,E2) is the distance between their sub-
elements. The problem of finding the distance 
between two sets (attribute sets or element sets) is 
cast into a maximal matching problem. An element 
in one set must have a one-on-one match in the other 
set. Each possible match has a cost (the distance). 
The maximal matching is the one that produces the 
minimal sum of their costs. If two sets have different 
sizes, a virtual element is created in the smaller set 
for every surplus element in the larger set. A virtual 
element has the maximal distance 1 to any element. 
The minimal sum of costs is obtained by applying 
the well-known Hungarian algorithm [4]. The 
normalized sum of distances is the final distance 
between two sets. Figure 2 presents an example of 
the computation of distance between a set of size 2 
and a set of size 3. 

  

 
Figure 2. An example of distance 
between two sets. 
  

As the basis for this distance measure, the type 
and distance measure for each possible kind of XML 
attribute must be defined. For example, the attribute 
‘address’ is a discrete XML attribute, and the 
distance between two addresses is simply 0 is they 
are the same and 1 if they are different. As a further 
example, ‘mismatch’ (for mismatch rate) is a 
numeric XML attribute, and the distance between 
two mismatch rates  and  is given as |1r 2r |21 rr −  
(where ). For each attribute, the XML 
distance measure calls the appropriate function 
according to the attribute’s type. Since an XML 
element consists of a set of attributes and a (possibly 
empty) set of sub-elements, the distance between 
two such elements is computed as noted above in 
terms of the distances between the attributes sets and 
the sub-element sets. But determining the distance 
between the two sub-element sets in turn requires 
determining the distances between their elements. 
Thus these two methods must call each other 
recursively until reaching an element with no sub-
elements (a leaf). The distance between two XML 

objects is then defined simply as the distance 
between their root elements.   

1,0 21 ≤≤ rr

 
 
5 Experiment with the 1998 DARPA 

Datasets 
 
5.1  Construction of the Case Library from 

Training Data 
 
The library of past cases comprises the knowledge 
of a CBR system. A good case library should be 
representative of all possible problems and contain 
as little redundancy as possible. As was mentioned, 
a three-step procedure has been developed for the 
construction of the case library from training data: 
creating initial cases, clustering initial cases, and 
selecting final cases. These steps are illustrated in 
Figure 3. 
 

  
 

Figure 3. The three steps of case 
library construction. 

 
In the first step, the training data is fed into the 

sensors. Sensors generate streams of IDMEF alerts. 
From the labeled information in training data, alerts 
corresponding to the same attack instance are 
aggregated into an XML object. Each instance of an 
attack is associated with an XML object of this kind 
if there is any alert generated for that instance. Such 
XML objects collected in the first step are called 
initial cases. The number of initial cases can be very 
large. It is possible that many initial cases 
correspond to the same type of attack and that most 
of them are very similar to each other. Our 
experiments with the 1998 DARPA datasets (more 
detail in Section 9) produced hundreds of similar 
cases associated with the type ‘warezclient’. If the 
CBR system had to go through all these cases for 
every problem, the performance would be very poor.  

Obviously, the use of large numbers of similar 
cases is redundant. In order to remove this 
redundancy, a clustering approach is applied in the 
second step. For this purpose, we developed a 
simple hierarchical agglomerative clustering 
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algorithm based on the XML distance measure 
discussed in the previous section. The hierarchical 
clustering is done in a bottom-up manner by starting 
with each case forming its own cluster. Next, the 
two clusters that are closest to each other are merged 
into a new cluster. Here, since the clusters are 
singletons, the distance between clusters is simply 
the distance between their two cases. For all 
subsequent clusterings, the step of merging the two 
most similar clusters is repeated until all cases are in 
a single cluster or the termination condition is 
satisfied. The termination condition is that there are 
no further clusters within a certain threshold 
distance of one another.  

If there is more than one case in one cluster, the 
distance between two clusters is the maximal 
distance between a case in one cluster and a case in 
the other. More specifically, where C = {c1, c2 
,…,cn}, C’ = {c’

1, c’
2 ,…,c’

m } are clusters of objects, 
dis( C, C’ ) = max{ dis( ci , c’

j ), 1≤ i≤ n,1≤ j≤ m }. 
Figure 4 gives an example. There are 5 objects 
(cases) with distance matrix shown on the left. 
When a threshold of 0.5 is set, the clustering 
algorithm will produce two clusters as shown on the 
right. 

 

 
 

Figure 4. An example of clustering  
objects. 

 
According to whether or not all objects in a 

cluster belong to the same type, a cluster can be 
marked as either pure or impure. For example, in 
Figure 3, clusters 1 and 3 are pure and cluster 2 is 
impure. A pure cluster indicates that its objects can 
be successfully distinguished from objects in other 
clusters. In contrast, an impure cluster indicates that 
its objects, although of different types, share some 
common patterns and cannot be effectively 
distinguished from each other. Since objects in a 
pure cluster are similar to each other, there is no 
need to compare all of them with a problem during 
reasoning. 

Thus, in the third step, a representative of every 
pure cluster will be selected for entry into the case 
library. The method we applied to find the 
representatives is straightforward; we pick the one 
with minimal sum of distances to all other objects in 
the cluster. For example, a distance matrix of 4 

objects in a pure cluster is given as in Figure 5. 
Because object 4 has the minimal sum of distances 
to the other objects, it is selected. For impure 
clusters, we do not make any change; each case in 
the cluster becomes its own case in the CBR library. 

  

 
 

Figure 5. Example of selecting 
a representative case. 

 
5.2  Method Using Explicit Alert Correlation 
 
This employs a straightforward application of CBR. 
If the given alerts all contain the necessary session 
information, then they can be sorted according to 
their sessions, and then, within sessions, be sorted 
according to the sensors that produced them. Thus, 
for each session, we get a pattern of alerts that can 
be directly matched with the alert patterns appearing 
in the cases in the case library, and the detection 
process then amounts to retrieving the case that is 
most similar. The attack described by the retrieved 
case is assumed to have taken place. 

This must be qualified, however, to cover the 
situation that no cases in the library are sufficiently 
similar to the given set to warrant this conclusion. 
To this end we add a requirement that the distance 
between the given set and the pattern in the case 
must be below some threshold. In our experiments, 
we used the same threshold as was used for the 
clustering algorithm, namely, 0.3. 

We apply the same threshold that was used to 
construct the case library because that threshold can 
best distinguish the different types of cases. Patterns 
falling outside of the accepting zone are treated as 
normal behaviors. However, they can be instances of 
unknown attacks or variants of old attacks. Ignoring 
them causes the generation of false negatives. 
Generally, the solution suggested by a CBR system 
will be tested for success in the working 
environment. If a solution is not good enough to 
solve the problem, a case including the revised 
solution will be entered into case library for future 
reference. 
 
5.3  The Experimental Results 
 
The 1998 DARPA datasets provide nine weeks of 
data, seven weeks for training and two weeks for 
testing. Both training data and testing data have two 
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main information sources. One is BSM Audit Data 
for host-based IDS, the other is tcpdump data for 
network-based IDS. We selected STIDE [2, 3] and 
Snort [9] as the sensors to process these two 
information sources. STIDE is a host-based anomaly 
detection program developed to show that sequences 
of system calls can be used for anomaly detection. 
STIDE was trained with the normal sessions of 
some common services, such as ftp, telnet, and 
smtp. Most attacks in the 1998 DARPA datasets 
were launched against these types of services. 
STIDE, in its original version, produces mismatch 
rates and does not fire alerts. Some perl scripts were 
written to process the BSM audit files to find the 
session information. The outputs of STIDE, along 
with the session information found by those scripts, 
were represented as IDMEF messages that serve as 
the STIDE alerts. Snort is network-based misuse 
detection tool. Snort was configured as using the 
standard default rules and was set up with an 
IDMEF output plug-in [7] that can automatically 
transform default Snort alerts into IDMEF 
messages. 

The labeled information of the 1998 DARPA  
datasets is given in list files. These list files contain 
the information that correlates the host sessions and 
network sessions and, for each session indicates 
whether it was normal or contained an attack, and in 
the latter case gives the name of the attack. 

The experiment focused on the attacks against 
the host (named pascal) where the BSM audit data 
was collected. Network sessions not associated with 
the host have been ignored, since the information of 
their corresponding host sessions is not given in the 
training data. The case library was constructed 
through the three steps described in Section 5. First, 
the initial cases were collected. There are 440 initial 
cases generated for 13 types or variants of attacks. 
In the second step, the clustering algorithm 
produced 20 clusters for the initial cases when the 
threshold was set at 0.3. There is 1 impure cluster 
and 19 pure clusters, including 14 singletons 
(clusters having only one member). The distribution 
of initial cases over the clusters is shown in Table 1. 

Note that instances of the ‘warezclient’ attack 
have been grouped into two pure clusters, 3 and 4. 
According to the method described in the Section 6, 
one representative from each of these two clusters 
was selected and entered into the case library. Two 
other types of attacks, ‘ffb’ and ‘ftp_write’, are 
processed in a similar way because all the instances 
of these two types have also fallen into pure clusters. 
Finding representatives of pure clusters greatly 
decreases the number of cases necessary for 
reasoning. For example, to find out how close a 

pattern of alerts is to the ‘warezclient’ attack, only 2, 
instead of 408, need to be compared. All objects in 
singletons and impure clusters go directly into the 
case library. This produced a case library having a 
total of 30 final cases.  

 

type amount C
1 C2 C3 C4 C5 C6 S 

eject 5      5  
ffb 4     3  1 

ffb_clear 1       1 
format 1      1  

format_fail 1      1  
format_cle

ar 1       1 

ftp_write 4 2 2      
loadmodul

e 3      2 1 

satan 8      1 7 
spy 2      1 1 

warez 1       1 
warezclient 408   175 233    
warezmast

er 1       1 

Final Case 30 1 1 1 1 1 11 14
 
Table 1. Clustering results of the 
initial cases generated for the 1998 
DARPA training data. The last 
column is singletons. 

 
The BSM audit data and tcpdump data in the 

DARPA testing data were then fed into STIDE and 
Snort respectively. In this experiment, alerts were 
correlated by sessions. The IDMEF alerts generated 
by both STIDE and Snort for the same session were 
aggregated in a single XML document. Such XML 
documents were then sent to the CBR system as 
problems. 

The overall results are presented in Table 2. The 
detection rate is the percentage of detected attacks in 
all attacks. An attack is detected if there is at least 
one alert generated for it. The false positive rate is 
the percentage of false alerts in all alerts. Snort may 
generate more than one alert for a session. We count 
all Snort alerts generated during normal sessions as 
false positives and all Snort alerts generated during 
attack sessions as true alerts. STIDE generates at 
most one alert for a session. Since it applies anomaly 
detection, a threshold is normally required to specify 
the condition of firing an alert. To be conservative, 
an alert is launched for any amount of detected 
anomalies. In other words, the threshold is zero for 
STIDE in the experiment. False negatives are 
undetected attacks. The number of false negatives 
can be computed as #attacks − #detected attacks. 
There are 6550 attack sessions (in a total of 8866 
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sessions) in the testing data. The CBR system fires 
6537 alerts in which there are 6478 true alerts. Thus, 
the detection rate is 6478/6550 = 98.9%; the false 
positive rate is (6537 − 6478)/6537 = 0.90%; the 
number of false negatives is 6550 − 6478 = 72. 

In our experiment, the detection threshold is set 
as 0.3 for the reasons discussed in Section 7.1. 
Problems that fall outside of the accepting zone are 
regarded as being normal because they do not match 
any known case. However, the system may miss a 
problem caused by a new attack or some variant of a 
known attack. For example, the first ‘ps’ attack on 
Monday of the first week was missed by the system. 
It happens that there are many types of attacks in the 
testing data, such as ‘processtable’ and ‘mailbomb’, 
that do not have any instance at all in the training 
data. Thus the system makes the wrong decision the 
first time it meets them. 

We used this phenomenon to simulate updating 
the case library over time. A new case was entered 
into the case library whenever a wrong decision was 
made. Our experiment assumes that the update is 
done soon enough that the system will not make the 
same mistake again for identical problems. Although 
in practice a sequence of attacks of the same type 
can occur several times during a short period of 
time, and no update can be made on such short 
notice, our experiment was conducted for the 
purpose of demonstrating the potential of this 
approach. 

From the results in Table 2, one can see that the 
system has a much better detection rate than Snort 
and almost the same detection rate as STIDE. It has 
a much lower false positives rate than either sensor. 
Only STIDE has a smaller number of false negatives 
than the CBR system. The fact that there are a large 
number of new attacks in the testing data contributes 
to most of the false negatives of the CBR system. 
The CBR system first missed a few new types of 
attacks, but after the case library was updated with 
these, it caught all subsequent occurrences of these 
attacks. 

 
 

#Alerts Detection 
rate 

False 
Positives 

rate 
#False 

Negatives 

STIDE 7084 99.6% 7.9% 27 
Snort 6120 21.8% 76.6% 5118 
CBR 6428 98.9% 0.9% 72 

 
Table 2. Results of the first 
experiment. 

 
Moreover, the system can indicate the exact types 

of most detected attacks. This is important in order 
to take appropriate actions in response to attacks. 

STIDE applies anomaly detection and thus is 
inherently unable to provide the detail of attacks. 
However, the alert correlation used in the CBR 
process allows the attack information to be obtained 
from the retrieved case. This is an important 
augmentation of STIDE. 

Snort processes one network packet at a time and 
ignores the contexts of attacks.  Although it applies 
misuse detection, it tends to generate a large number 
of false alerts, overwhelming its human observers. 
Our results show that the CBR system can almost 
exactly identify the attacks, thus greatly alleviating 
this problem. 
 
 
7  Experiment with the 2000 DARPA 

Datasets 
 
7.1  Method Using Implicit alert Correlation 
 
This approach might be called ‘case-oriented’ alert 
correlation. Here we assume that there is a case 
library that contains descriptions of known attacks, 
where, as before, cases are identified by their 
patterns of alerts represented in XML. As mentioned 
above, the underlying idea is, given some collection 
of alerts raised by the various sensors during some 
given time frame, to find those cases in the case 
library whose alert patterns are sufficiently similar 
to some subset of the given set to suggest that the 
attack described by that case has taken place.  

The manner in which these subsets are identified 
and applied is described in Figure 6. A fragment of 
some given set of alerts is shown in the middle 
column, where the alerts are organized according to 
the sensors that produced them. Here there are 6 
alerts, with 3 coming from sensor S1, denoted B11, 
B12, and B13, and 3 from Sensor S2, denoted B21, 
B22, and B23.  

On the left is shown the alert pattern from some 
case in the case library. For the purpose of the 
illustration, this pattern also involves the same 
sensors, S1 and S2, although in general this need not 
be true. Some cases might involve other sensors, and 
might not involve either S1 or S2. The pattern of 
alerts in the given case consists of 4 alerts, A11 and 
A12 from S1, A21 and A22 from S2. 

We use the pattern in the case to extract a subset 
of the alerts in the given set and build a new 
(derived) pattern as shown on the right. This is done 
as follows. First, for each sensor, we compute the 
pair-wise distance between the alerts in the case and 
those in the given set, using the distance measure 
described in Section 5. These are then recorded in a 
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Figure 6. Example of case-oriented alert correlation. 

 
distance matrix as shown at the bottom of Figure 6. 

To these matrices we next apply the Hungarian 
algorithm described in Section 5, to find the optimal 
matching, i.e., the set of alert pairs with the 
minimum sum of the distances. These are shown in 
the boxes in the matrices. The matched alerts from 
the given set are then extracted to form the derived 
set. Last we apply the distance measure of Section 5 
again to find the distance between the derived 
pattern and the pattern of the case. If this distance is 
below some specified threshold, we take this is 
meaning what was explained above, i.e., that alerts 
extracted from the given set are correlated in the 
same manner as their corresponding alerts in the 
case and that the attack represented by the case is 
likely to have occurred. 
This is done for every case in the case library. Thus 
it is possible that more than one case will be 
matched in this manner, indicating that possibly 
more than one attack has occurred. 
 
 
7.2  Experimental Results 
 
The 2000 DARPA intrusion detection scenario 
specific datasets include two sets entitled LLDOS 
1.0 and LLDOS 2.0.2. LLDOS 1.0 contains a series 
of attacks in which an attacker probes, breaks in, 
installs the components necessary to launch a DDoS 
attack, and actually launches a DDoS attack against 
an off-site server. LLDoS 2.0.2 includes a similar 
sequence of attacks run by an attacker stealthier than 

the first one. The datasets come with low-level raw 
data, and mid-level labeled data. The low-level data 
consists of DMZ tcpdump data, inside tcpdump 
data, and BSM audit data from two Solaris 
machines, Pascal and Mill. The mid-level data 
consists of XML files containing IDMEF alerts 
generated by sensors. Our experiment was done only 
with mid-level data. In this experiment, LLDOS 1.0 
was used to construct the case library. Then the 
CBR system was tested using the data in LLDOS 
2.0.2. This is appropriate since LLDOS 2.0.2 is a 
variant of LLDOS 1.0. 

The LLDOS 1.0 attack scenario is carried out 
over multiple network and audit sessions. These 
sessions have been grouped into 5 attack phases. A 
case corresponding to each attack phase is created 
for each of Pascal and Mill. All alerts that took place 
during an attack phase and were associated with a 
particular host form a case. The datasets provide 
each host with IDMEF alerts from three sources: 
DMZ, inside network, and the host itself. 
Accordingly, a case may have alerts from at most 
three sensors. Two case libraries were constructed 
for Pascal and Mill, respectively. Each has five 
cases corresponding to the five different attack 
phases. Since there is no redundancy in this 
experiment, clustering was not performed. The 
experiment applied case-oriented alert correlation. 
The correlated alerts for a particular case form a 
description of a problem representing a potential 
attack. The results are presented in Table 3.  
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The results have demonstrated that our system is 
able to effectively detect the attack described by 
LLDOS 2.0.2, especially on Mill. However, the first 
phase of the attack may not be easily recognized. 
The constructed problems for case-phase-1 on both 
machines have relatively large distances. This is 
because the attackers in LLDOS 1.0 and LLDOS 
2.0.2 used different ways to find victim hosts. The 
attacker in LLDOS 1.0 performed a scripted of 
IPsweep to find ‘live’ IP addresses first and then 
sent ‘sadmind’ requests to find out possible victim 
hosts. The attacker in LLDOS 2.0.2 only performed 
an HINFO query of a public DNS server that 
directly returned possible victim hosts. Once the 
victims have been found, the rest of both attacks is 
almost the same. This is why the constructed 
problems show better similarities to their 
corresponding cases. 

 
Pascal Mill 

Case 
Library 

Distance 
between 
case and 

constructed 
problem 

Case 
Library 

Distance 
between case 

and 
constructed 

problem 
Case-
phase

-1 
0.67 Case-

phase-1 0.5 

Case-
phase

-2 
0.389 Case-

phase-2 0.139 

Case-
phase

-3 
0.389 Case-

phase-3 0.218 

Case-
phase

-4 
0.425 Case-

phase-4 0.233 

Case-
phase

-5 
0.389 Case-

phase-5 0.141 

  
Table 3. Results of the second 
experiment. 

 
There is another important difference between 

LLDOS 1.0 and LLDOS 2.0.2. In LLDOS 1.0, 
Pascal and Mill were attacked from outside of the 
network. As a result, alerts were generated from both 
the DMZ and inside the network. In contrast, in 
LLDOS 2.0.2, the attacker broke into Mill and 
fanned out from there. Mill is inside the network. 
The attacks from Mill to other hosts inside are 
invisible to the sensor at the DMZ. So, Pascal didn’t 
accept any alert from the DMZ sensor in LLDOS 
2.0.2. This difference made problems on Pascal have 
less similarity to their cases than problems on Mill. 

But if the appropriate threshold is set, say 0.4, most 
of the attack phases can be detected. More 
specifically, on Mill, all attack phases except phase 1 
will be identified, and on Pascal, all attack phases 
except 1 and 4 will be identified. 

 
8  Concluding Remarks 

 
This paper has presented a CBR approach to meta 
intrusion detection. The basic idea behind the CBR 
approach is reasoning from concrete examples. The 
intrusion detection problem is cast into a problem of 
looking for the most similar example. Some 
common problems, such as construction of a 
knowledge base and alert correlation, arising in meta 
intrusion detection, can be dealt with in 
straightforward ways. The results of some 
experiments with the 1998 and 2000 DARPA 
datasets have demonstrated the potential of this 
approach. 
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