
Application of Case-Based Reasoning to Multi-Sensor
Network Intrusion Detection∗

Jidong Long, Daniel Schwartz, and Sara Stoecklin

Department of Computer Science
Florida State University

Tallahassee, Florida 32306
USA

Abstract: An intrusion detection system (IDS) is generally limited by having a single detection model and a
single information source for detecting attacks. Multi-sensor (or meta) intrusion detection addresses this
problem by combining results of multiple IDSs and providing global decisions. Nearly all current meta-IDSs
are either statistics-based or logical rule-based and typically require substantial human involvement for setup.
This paper reports two experiments that employ a case-based reasoning (CBR) approach, one using the well-
known 1998 DARPA datasets, which contain a variety of different types of attacks, and one using the 2000
DARPA datasets, which contain distributed denial of service (DDOS) attacks. A critical issue with meta-IDS
is alert correlation: determining when alerts from the various sensors are generated by the same attack. The
first experiment uses explicit alert correlation based on session information contained in the alerts. In addition,
it avoids human involvement in setup by employing data mining techniques to generate the case library
automatically from training data. The results show that the CBR approach is very effective in distinguishing
false alerts from real attacks, and in many of the latter cases can correctly identify the type of attack. The
second experiment applies CBR to achieve a kind of implicit alert correlation. Explicit correlation is not
possible here, since DDOS attacks span multiple network sessions. Here again the approach has proven
effective. For the second experiment the case library is derived directly from the training data without data
mining techniques.

Key-Words: Case-Based Reasoning, Data-Mining, Intrusion Detection, Alert Correlation

1 Introduction

∗ This research was supported by US Army Research Office, grant number DAAD 19-01-1-0502.

Although intrusion detection has been explored for
more than two decades, current methods still suffer
from large numbers of false reports. The typical
intrusion detection system (IDS) not only tends to
generate a large number false alerts (false positives),
but it can also miss some attacks (false negatives).
This high volume and low quality of alerts make it
difficult for human users of such systems to
determine when an attack is taking place and how to
respond.

Two primary factors contribute to false reports.
One is the imperfection of detection techniques.
Intrusion detection techniques can be roughly
classified as either misuse detection or anomaly
detection. Misuse detection works from signatures
of known attacks; hence it cannot detect new attacks
(produces fales negatives). Anomaly detection looks
for abnormal behavior, and is criticized inasmuch as
the training data cannot be guaranteed to be either

clean or thorough (so that it produces false
positives). The other factor is the limitation of using
a single information source. Some attacks span
multiple hosts, operating systems, applications, and
network sessions. The complete evidence of such
attacks can only be attained by investigating
multiple information sources and combining their
results.

An IDS is also referred to as a sensor (and
sometimes an analyzer). The concept of a multi-
sensor (or meta) IDS comes from the idea of
cooperation among multiple IDSs. A meta-IDS
detects attacks by studying the results from other
IDSs, where these sensors are deployed at different
locations in a network. Because sensors may apply
complementary detection approaches and work on
complementary information sources, the meta-IDS
potentially has the ability to make more
comprehensive decisions. The main task of a meta-
IDS is to correlate alerts, i.e., to determine when

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp260-269)

alerts from the various sensors arise from the same
attack. This is necessary in order to generate global
alerts and discard false ones. Accordingly, alert
correlation has become one of the key issues in this
field, and any meta-IDS has to rely on some alert
correlation approach.

In this paper, we present case-based reasoning
(CBR) techniques for meta intrusion detection. In a
CBR system, the expertise is recorded in a library of
past cases rather than, e.g., being encoded in a set of
if-then rules. In general, a case is given as a
problem-solution pair. In the present application, a
problem is described as a pattern of alerts from the
various IDSs that has in the past been known to
occur during some attack, and a solution is given as
the name of the attack together with a prescribed
response, such as raise an alert or take some
appropriate action. The CBR system contains a
library of such cases. Then, when a pattern of alerts
is observed in the system being protected, this
pattern is matched against the patterns in the case
library based on a similarity measure. If the most
similar case found is sufficiently similar, then this
indicates that the attack is real (not a false alert) as
well as the nature or name of the attack.

Two experiments were conducted to validate
this CBR approach, one using the well-known 1998
DARPA datasets, which contain a variety of
different types of attacks, and one using the 2000
DARPA datasets, which contain distributed denial
of service (DDOS) attacks [6]. Both experiments
used two well-known sensors: Snort [9], a network-
based IDS that monitors the packets entering and
leaving a network, and STIDE [2, 3], a host-based
IDS that monitors the system calls on a single node
in a network

The experiments may be distinguished by the
manner in which they deal with alert correlation.
One relies on the availability of session information
(source and target IP addresses and ports) in the
alerts from the various sensors. We call this explicit
alert correlation. It applies here inasmuch as it can
be assumed that each attack occurs within one
session. Snort alerts contain session information,
extracted directly from the packets. STIDE does not
provide session information, but its input stream of
system calls can be preprocessed to obtain this.
Explicit correlation facilitates the CBR process
inasmuch as it allows one to gather together all the
alerts generated by all the sensors in the current
network session and then treat this collection of
alerts as a pattern that can be matched against the
cases in the library. If the pattern recorded in some
case in the library is sufficiently similar, this is taken

to mean the attack represented by the case has
occurred

The other alert correlation method applies when
the session information is unavailable or is
otherwise insufficient for correlation. In the present
case, even though session information can be made
available it would not be useful, since DDOS attacks
can span multiple sessions. Our method takes the
current pattern of alerts gathered from the sensors
within some time frame and compares this pattern
with the cases in the library. For each case, those
alerts that match alerts in the current pattern to some
specified degree are extracted and assembled
together to form a new pattern. The similarity of this
new pattern with the pattern of the original case is
then computed, and if this similarity degree is large
enough, it is assumed that the current pattern
represents a new occurrence of the same attack as
described by the original case. Thus here alert
correlation is achieved as part of the CBR process.
We call this implicit alert correlation.

Another way in which the two experiments may
be distinguished is in terms of how the case library
is constructed. For purposes of the first experiment,
a method was developed that applies data mining
techniques to construct the case library
automatically from historical data. This effectively
eliminates the need for human involvement. The
method is comprised of three steps. First, training
data is input to the sensors, and some initial cases
are generated according to labeled information in
training data. Second, a clustering algorithm is
applied to group the initial cases. Third, from each
clean cluster a representative is selected to serve as a
case in the case library. In the second experiment,
the case library can be derived directly from the
training data without data mining techniques.

In this research, all alerts are represented in the
Intrusion Detection Message Exchange Format
(IDMEF) [1], an XML representation that is
becoming increasingly accepted as a standard alert
format. Then an alert pattern is represented as an
XML document containing a collection of such
IDMEF alerts. In addition, a case in the CBR library
is represented in XML, where the problem part of
the case adopts this same XML alert pattern
representation.

2 Case-Based Reasoning

In case-based reasoning systems, the expertise is
embodied in a library of past cases. This may be
contrasted with systems where the knowledge is

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp260-269)

encoded as a set of if-then rules. A case consists of
the description of a problem and its solution. The
knowledge and reasoning process used by the
experts to solve the problem is not recorded, but it is
implicit in the solution.

In general, a CBR system works as follows. A
problem is recieved from the environment and
represented in a proper format. It is compared with
cases in the case library. A similarity measure is
applied to find the most similar case. That case is
returned and used to suggest a solution for the
current problem. Some feedback from the
environment tells whether the given solution is good
for the problem. If the solution is not good enough, a
new case including the revised solution is created
and entered into case library for future reference.

The present application uses only the case
matching and retrieval components of CBR and does
not contribute new cases to the library. The software
implementation uses our own adaptive case-based
reasoning framework, previously reported in [8].

3 Cases and Problems in Meta Intru-

sion Detection

Cases and problems have to be clearly defined for a
specific domain where CBR is applied. Our domain
is meta intrusion detection. For this we define a
problem as a potential attack. The collection of
alerts generated from different sensors during the
attack constitutes the description of an attack (or a
problem). Since an alert is an XML object, in order
to facilitate the aggregation of alerts, a problem is
also represented in XML. The alerts comprising a
problem are organized according to the sensors that
produced them, and alerts from the same senor are
sorted in chronological order. A case consists of the
description of an attack and its solution. Figure 1
shows the representations and structures of a case, a
problem, and an alert.

An XML representation of an object is
inherently different from the attribute-value
representation applied by conventional CBR
systems. In an attribute-value representation, an
object is described by a fixed number of attributes
(attribute names and attribute values). Although the
attribute-value representation is popular and used in
a number of knowledge systems, it has a limitation
when describing complex objects, such as trees. An
XML document is a tree structure. If an XML object
is transformed into a set of attributes, some
information in it may be lost. Thus, in our approach,
data analysis is performed directly over the alerts,

given as XML objects, rather than working on a set
of attributes extracted from the original alerts.

.
<Case>

 + <Problem>

 + <Solution>

</Case>

<Problem>

 <Sensor id =“…”>

 + <IDMEF-Message>

 + <IDMEF-Message>

…

 </Sensor>

 <Sensor id =“…”>

 + <IDMEF-Message>

 + <IDMEF-Message>

…

 </Sensor>

</Problem>

<IDMEF-Message>

 <Alert>

 + <CreateTime>

 + <Source>

 + <Target>

 + <Classification>

 …

 </Alert>

</ IDMEF-Message >

Figure 1. The XML representations
of a case, a problem and an alert.

4 An XML Similarity Measure

Distance measures are used extensively in data
mining and other types of data analysis. Such
measures assume it is possible to compute for each
pair of domain objects their mutual distance. Most
distance measures work with attribute-value
representations of the domain objects. In our work,
however, since all objects (alerts, problems, and
cases) are given in XML, is is more convenient to
define a similarity measure that works directly with
these XML representations. This led us to devise a
general measure for the distance between two
arbitrary XML documents, the details of which can
be found in [5]. Briefly, it works as follows.

An XML document is a collection of XML
elements organized in a tree structure in which there
is one root element. An XML element can be
represented as 3-tuple [e, A, E] where e is the name
of the element, A is the attribute set of the element
and E is the sub-element set of the element. An
XML attribute consists of an attribute name and an
attribute value. In case an XML element has content,
its content is moved into a new attribute whose
name is the element name and whose value is the
content of the element content. An XML document
obtained by moving the contents into attributes is
called content-free. Each XML element has a sub-
element set (which will be empty if the element is a
leaf), and any element in that set will in turn have its
own sub-element set, and so on. Thus the
hierarchical organization of the original XML
document is preserved in the 3-tuple representation.

Given two elements [e1, A1, E1] and [e2, A2, E2],
their distance is given as (dis(A1,A2)+dis(E1,E2))/2,

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp260-269)

if e1=e2, otherwise, it is the maximal value 1, where
dis(A1,A2) is the distance between their attribute sets
and dis(E1,E2) is the distance between their sub-
elements. The problem of finding the distance
between two sets (attribute sets or element sets) is
cast into a maximal matching problem. An element
in one set must have a one-on-one match in the other
set. Each possible match has a cost (the distance).
The maximal matching is the one that produces the
minimal sum of their costs. If two sets have different
sizes, a virtual element is created in the smaller set
for every surplus element in the larger set. A virtual
element has the maximal distance 1 to any element.
The minimal sum of costs is obtained by applying
the well-known Hungarian algorithm [4]. The
normalized sum of distances is the final distance
between two sets. Figure 2 presents an example of
the computation of distance between a set of size 2
and a set of size 3.

Figure 2. An example of distance
between two sets.

As the basis for this distance measure, the type
and distance measure for each possible kind of XML
attribute must be defined. For example, the attribute
‘address’ is a discrete XML attribute, and the
distance between two addresses is simply 0 is they
are the same and 1 if they are different. As a further
example, ‘mismatch’ (for mismatch rate) is a
numeric XML attribute, and the distance between
two mismatch rates and is given as |1r 2r |21 rr −
(where). For each attribute, the XML
distance measure calls the appropriate function
according to the attribute’s type. Since an XML
element consists of a set of attributes and a (possibly
empty) set of sub-elements, the distance between
two such elements is computed as noted above in
terms of the distances between the attributes sets and
the sub-element sets. But determining the distance
between the two sub-element sets in turn requires
determining the distances between their elements.
Thus these two methods must call each other
recursively until reaching an element with no sub-
elements (a leaf). The distance between two XML

objects is then defined simply as the distance
between their root elements.

1,0 21 ≤≤ rr

5 Experiment with the 1998 DARPA

Datasets

5.1 Construction of the Case Library from

Training Data

The library of past cases comprises the knowledge
of a CBR system. A good case library should be
representative of all possible problems and contain
as little redundancy as possible. As was mentioned,
a three-step procedure has been developed for the
construction of the case library from training data:
creating initial cases, clustering initial cases, and
selecting final cases. These steps are illustrated in
Figure 3.

Figure 3. The three steps of case
library construction.

In the first step, the training data is fed into the

sensors. Sensors generate streams of IDMEF alerts.
From the labeled information in training data, alerts
corresponding to the same attack instance are
aggregated into an XML object. Each instance of an
attack is associated with an XML object of this kind
if there is any alert generated for that instance. Such
XML objects collected in the first step are called
initial cases. The number of initial cases can be very
large. It is possible that many initial cases
correspond to the same type of attack and that most
of them are very similar to each other. Our
experiments with the 1998 DARPA datasets (more
detail in Section 9) produced hundreds of similar
cases associated with the type ‘warezclient’. If the
CBR system had to go through all these cases for
every problem, the performance would be very poor.

Obviously, the use of large numbers of similar
cases is redundant. In order to remove this
redundancy, a clustering approach is applied in the
second step. For this purpose, we developed a
simple hierarchical agglomerative clustering

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp260-269)

algorithm based on the XML distance measure
discussed in the previous section. The hierarchical
clustering is done in a bottom-up manner by starting
with each case forming its own cluster. Next, the
two clusters that are closest to each other are merged
into a new cluster. Here, since the clusters are
singletons, the distance between clusters is simply
the distance between their two cases. For all
subsequent clusterings, the step of merging the two
most similar clusters is repeated until all cases are in
a single cluster or the termination condition is
satisfied. The termination condition is that there are
no further clusters within a certain threshold
distance of one another.

If there is more than one case in one cluster, the
distance between two clusters is the maximal
distance between a case in one cluster and a case in
the other. More specifically, where C = {c1, c2
,…,cn}, C’ = {c’

1, c’
2 ,…,c’

m } are clusters of objects,
dis(C, C’) = max{ dis(ci , c’

j), 1≤ i≤ n,1≤ j≤ m }.
Figure 4 gives an example. There are 5 objects
(cases) with distance matrix shown on the left.
When a threshold of 0.5 is set, the clustering
algorithm will produce two clusters as shown on the
right.

Figure 4. An example of clustering
objects.

According to whether or not all objects in a

cluster belong to the same type, a cluster can be
marked as either pure or impure. For example, in
Figure 3, clusters 1 and 3 are pure and cluster 2 is
impure. A pure cluster indicates that its objects can
be successfully distinguished from objects in other
clusters. In contrast, an impure cluster indicates that
its objects, although of different types, share some
common patterns and cannot be effectively
distinguished from each other. Since objects in a
pure cluster are similar to each other, there is no
need to compare all of them with a problem during
reasoning.

Thus, in the third step, a representative of every
pure cluster will be selected for entry into the case
library. The method we applied to find the
representatives is straightforward; we pick the one
with minimal sum of distances to all other objects in
the cluster. For example, a distance matrix of 4

objects in a pure cluster is given as in Figure 5.
Because object 4 has the minimal sum of distances
to the other objects, it is selected. For impure
clusters, we do not make any change; each case in
the cluster becomes its own case in the CBR library.

Figure 5. Example of selecting
a representative case.

5.2 Method Using Explicit Alert Correlation

This employs a straightforward application of CBR.
If the given alerts all contain the necessary session
information, then they can be sorted according to
their sessions, and then, within sessions, be sorted
according to the sensors that produced them. Thus,
for each session, we get a pattern of alerts that can
be directly matched with the alert patterns appearing
in the cases in the case library, and the detection
process then amounts to retrieving the case that is
most similar. The attack described by the retrieved
case is assumed to have taken place.

This must be qualified, however, to cover the
situation that no cases in the library are sufficiently
similar to the given set to warrant this conclusion.
To this end we add a requirement that the distance
between the given set and the pattern in the case
must be below some threshold. In our experiments,
we used the same threshold as was used for the
clustering algorithm, namely, 0.3.

We apply the same threshold that was used to
construct the case library because that threshold can
best distinguish the different types of cases. Patterns
falling outside of the accepting zone are treated as
normal behaviors. However, they can be instances of
unknown attacks or variants of old attacks. Ignoring
them causes the generation of false negatives.
Generally, the solution suggested by a CBR system
will be tested for success in the working
environment. If a solution is not good enough to
solve the problem, a case including the revised
solution will be entered into case library for future
reference.

5.3 The Experimental Results

The 1998 DARPA datasets provide nine weeks of
data, seven weeks for training and two weeks for
testing. Both training data and testing data have two

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp260-269)

main information sources. One is BSM Audit Data
for host-based IDS, the other is tcpdump data for
network-based IDS. We selected STIDE [2, 3] and
Snort [9] as the sensors to process these two
information sources. STIDE is a host-based anomaly
detection program developed to show that sequences
of system calls can be used for anomaly detection.
STIDE was trained with the normal sessions of
some common services, such as ftp, telnet, and
smtp. Most attacks in the 1998 DARPA datasets
were launched against these types of services.
STIDE, in its original version, produces mismatch
rates and does not fire alerts. Some perl scripts were
written to process the BSM audit files to find the
session information. The outputs of STIDE, along
with the session information found by those scripts,
were represented as IDMEF messages that serve as
the STIDE alerts. Snort is network-based misuse
detection tool. Snort was configured as using the
standard default rules and was set up with an
IDMEF output plug-in [7] that can automatically
transform default Snort alerts into IDMEF
messages.

The labeled information of the 1998 DARPA
datasets is given in list files. These list files contain
the information that correlates the host sessions and
network sessions and, for each session indicates
whether it was normal or contained an attack, and in
the latter case gives the name of the attack.

The experiment focused on the attacks against
the host (named pascal) where the BSM audit data
was collected. Network sessions not associated with
the host have been ignored, since the information of
their corresponding host sessions is not given in the
training data. The case library was constructed
through the three steps described in Section 5. First,
the initial cases were collected. There are 440 initial
cases generated for 13 types or variants of attacks.
In the second step, the clustering algorithm
produced 20 clusters for the initial cases when the
threshold was set at 0.3. There is 1 impure cluster
and 19 pure clusters, including 14 singletons
(clusters having only one member). The distribution
of initial cases over the clusters is shown in Table 1.

Note that instances of the ‘warezclient’ attack
have been grouped into two pure clusters, 3 and 4.
According to the method described in the Section 6,
one representative from each of these two clusters
was selected and entered into the case library. Two
other types of attacks, ‘ffb’ and ‘ftp_write’, are
processed in a similar way because all the instances
of these two types have also fallen into pure clusters.
Finding representatives of pure clusters greatly
decreases the number of cases necessary for
reasoning. For example, to find out how close a

pattern of alerts is to the ‘warezclient’ attack, only 2,
instead of 408, need to be compared. All objects in
singletons and impure clusters go directly into the
case library. This produced a case library having a
total of 30 final cases.

type amount C
1 C2 C3 C4 C5 C6 S

eject 5 5
ffb 4 3 1

ffb_clear 1 1
format 1 1

format_fail 1 1
format_cle

ar 1 1

ftp_write 4 2 2
loadmodul

e 3 2 1

satan 8 1 7
spy 2 1 1

warez 1 1
warezclient 408 175 233
warezmast

er 1 1

Final Case 30 1 1 1 1 1 11 14

Table 1. Clustering results of the
initial cases generated for the 1998
DARPA training data. The last
column is singletons.

The BSM audit data and tcpdump data in the

DARPA testing data were then fed into STIDE and
Snort respectively. In this experiment, alerts were
correlated by sessions. The IDMEF alerts generated
by both STIDE and Snort for the same session were
aggregated in a single XML document. Such XML
documents were then sent to the CBR system as
problems.

The overall results are presented in Table 2. The
detection rate is the percentage of detected attacks in
all attacks. An attack is detected if there is at least
one alert generated for it. The false positive rate is
the percentage of false alerts in all alerts. Snort may
generate more than one alert for a session. We count
all Snort alerts generated during normal sessions as
false positives and all Snort alerts generated during
attack sessions as true alerts. STIDE generates at
most one alert for a session. Since it applies anomaly
detection, a threshold is normally required to specify
the condition of firing an alert. To be conservative,
an alert is launched for any amount of detected
anomalies. In other words, the threshold is zero for
STIDE in the experiment. False negatives are
undetected attacks. The number of false negatives
can be computed as #attacks − #detected attacks.
There are 6550 attack sessions (in a total of 8866

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp260-269)

sessions) in the testing data. The CBR system fires
6537 alerts in which there are 6478 true alerts. Thus,
the detection rate is 6478/6550 = 98.9%; the false
positive rate is (6537 − 6478)/6537 = 0.90%; the
number of false negatives is 6550 − 6478 = 72.

In our experiment, the detection threshold is set
as 0.3 for the reasons discussed in Section 7.1.
Problems that fall outside of the accepting zone are
regarded as being normal because they do not match
any known case. However, the system may miss a
problem caused by a new attack or some variant of a
known attack. For example, the first ‘ps’ attack on
Monday of the first week was missed by the system.
It happens that there are many types of attacks in the
testing data, such as ‘processtable’ and ‘mailbomb’,
that do not have any instance at all in the training
data. Thus the system makes the wrong decision the
first time it meets them.

We used this phenomenon to simulate updating
the case library over time. A new case was entered
into the case library whenever a wrong decision was
made. Our experiment assumes that the update is
done soon enough that the system will not make the
same mistake again for identical problems. Although
in practice a sequence of attacks of the same type
can occur several times during a short period of
time, and no update can be made on such short
notice, our experiment was conducted for the
purpose of demonstrating the potential of this
approach.

From the results in Table 2, one can see that the
system has a much better detection rate than Snort
and almost the same detection rate as STIDE. It has
a much lower false positives rate than either sensor.
Only STIDE has a smaller number of false negatives
than the CBR system. The fact that there are a large
number of new attacks in the testing data contributes
to most of the false negatives of the CBR system.
The CBR system first missed a few new types of
attacks, but after the case library was updated with
these, it caught all subsequent occurrences of these
attacks.

#Alerts Detection
rate

False
Positives

rate
#False

Negatives

STIDE 7084 99.6% 7.9% 27
Snort 6120 21.8% 76.6% 5118
CBR 6428 98.9% 0.9% 72

Table 2. Results of the first
experiment.

Moreover, the system can indicate the exact types

of most detected attacks. This is important in order
to take appropriate actions in response to attacks.

STIDE applies anomaly detection and thus is
inherently unable to provide the detail of attacks.
However, the alert correlation used in the CBR
process allows the attack information to be obtained
from the retrieved case. This is an important
augmentation of STIDE.

Snort processes one network packet at a time and
ignores the contexts of attacks. Although it applies
misuse detection, it tends to generate a large number
of false alerts, overwhelming its human observers.
Our results show that the CBR system can almost
exactly identify the attacks, thus greatly alleviating
this problem.

7 Experiment with the 2000 DARPA

Datasets

7.1 Method Using Implicit alert Correlation

This approach might be called ‘case-oriented’ alert
correlation. Here we assume that there is a case
library that contains descriptions of known attacks,
where, as before, cases are identified by their
patterns of alerts represented in XML. As mentioned
above, the underlying idea is, given some collection
of alerts raised by the various sensors during some
given time frame, to find those cases in the case
library whose alert patterns are sufficiently similar
to some subset of the given set to suggest that the
attack described by that case has taken place.

The manner in which these subsets are identified
and applied is described in Figure 6. A fragment of
some given set of alerts is shown in the middle
column, where the alerts are organized according to
the sensors that produced them. Here there are 6
alerts, with 3 coming from sensor S1, denoted B11,
B12, and B13, and 3 from Sensor S2, denoted B21,
B22, and B23.

On the left is shown the alert pattern from some
case in the case library. For the purpose of the
illustration, this pattern also involves the same
sensors, S1 and S2, although in general this need not
be true. Some cases might involve other sensors, and
might not involve either S1 or S2. The pattern of
alerts in the given case consists of 4 alerts, A11 and
A12 from S1, A21 and A22 from S2.

We use the pattern in the case to extract a subset
of the alerts in the given set and build a new
(derived) pattern as shown on the right. This is done
as follows. First, for each sensor, we compute the
pair-wise distance between the alerts in the case and
those in the given set, using the distance measure
described in Section 5. These are then recorded in a

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp260-269)

Figure 6. Example of case-oriented alert correlation.

distance matrix as shown at the bottom of Figure 6.

To these matrices we next apply the Hungarian
algorithm described in Section 5, to find the optimal
matching, i.e., the set of alert pairs with the
minimum sum of the distances. These are shown in
the boxes in the matrices. The matched alerts from
the given set are then extracted to form the derived
set. Last we apply the distance measure of Section 5
again to find the distance between the derived
pattern and the pattern of the case. If this distance is
below some specified threshold, we take this is
meaning what was explained above, i.e., that alerts
extracted from the given set are correlated in the
same manner as their corresponding alerts in the
case and that the attack represented by the case is
likely to have occurred.
This is done for every case in the case library. Thus
it is possible that more than one case will be
matched in this manner, indicating that possibly
more than one attack has occurred.

7.2 Experimental Results

The 2000 DARPA intrusion detection scenario
specific datasets include two sets entitled LLDOS
1.0 and LLDOS 2.0.2. LLDOS 1.0 contains a series
of attacks in which an attacker probes, breaks in,
installs the components necessary to launch a DDoS
attack, and actually launches a DDoS attack against
an off-site server. LLDoS 2.0.2 includes a similar
sequence of attacks run by an attacker stealthier than

the first one. The datasets come with low-level raw
data, and mid-level labeled data. The low-level data
consists of DMZ tcpdump data, inside tcpdump
data, and BSM audit data from two Solaris
machines, Pascal and Mill. The mid-level data
consists of XML files containing IDMEF alerts
generated by sensors. Our experiment was done only
with mid-level data. In this experiment, LLDOS 1.0
was used to construct the case library. Then the
CBR system was tested using the data in LLDOS
2.0.2. This is appropriate since LLDOS 2.0.2 is a
variant of LLDOS 1.0.

The LLDOS 1.0 attack scenario is carried out
over multiple network and audit sessions. These
sessions have been grouped into 5 attack phases. A
case corresponding to each attack phase is created
for each of Pascal and Mill. All alerts that took place
during an attack phase and were associated with a
particular host form a case. The datasets provide
each host with IDMEF alerts from three sources:
DMZ, inside network, and the host itself.
Accordingly, a case may have alerts from at most
three sensors. Two case libraries were constructed
for Pascal and Mill, respectively. Each has five
cases corresponding to the five different attack
phases. Since there is no redundancy in this
experiment, clustering was not performed. The
experiment applied case-oriented alert correlation.
The correlated alerts for a particular case form a
description of a problem representing a potential
attack. The results are presented in Table 3.

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp260-269)

The results have demonstrated that our system is
able to effectively detect the attack described by
LLDOS 2.0.2, especially on Mill. However, the first
phase of the attack may not be easily recognized.
The constructed problems for case-phase-1 on both
machines have relatively large distances. This is
because the attackers in LLDOS 1.0 and LLDOS
2.0.2 used different ways to find victim hosts. The
attacker in LLDOS 1.0 performed a scripted of
IPsweep to find ‘live’ IP addresses first and then
sent ‘sadmind’ requests to find out possible victim
hosts. The attacker in LLDOS 2.0.2 only performed
an HINFO query of a public DNS server that
directly returned possible victim hosts. Once the
victims have been found, the rest of both attacks is
almost the same. This is why the constructed
problems show better similarities to their
corresponding cases.

Pascal Mill

Case
Library

Distance
between
case and

constructed
problem

Case
Library

Distance
between case

and
constructed

problem
Case-
phase

-1
0.67 Case-

phase-1 0.5

Case-
phase

-2
0.389 Case-

phase-2 0.139

Case-
phase

-3
0.389 Case-

phase-3 0.218

Case-
phase

-4
0.425 Case-

phase-4 0.233

Case-
phase

-5
0.389 Case-

phase-5 0.141

Table 3. Results of the second
experiment.

There is another important difference between

LLDOS 1.0 and LLDOS 2.0.2. In LLDOS 1.0,
Pascal and Mill were attacked from outside of the
network. As a result, alerts were generated from both
the DMZ and inside the network. In contrast, in
LLDOS 2.0.2, the attacker broke into Mill and
fanned out from there. Mill is inside the network.
The attacks from Mill to other hosts inside are
invisible to the sensor at the DMZ. So, Pascal didn’t
accept any alert from the DMZ sensor in LLDOS
2.0.2. This difference made problems on Pascal have
less similarity to their cases than problems on Mill.

But if the appropriate threshold is set, say 0.4, most
of the attack phases can be detected. More
specifically, on Mill, all attack phases except phase 1
will be identified, and on Pascal, all attack phases
except 1 and 4 will be identified.

8 Concluding Remarks

This paper has presented a CBR approach to meta
intrusion detection. The basic idea behind the CBR
approach is reasoning from concrete examples. The
intrusion detection problem is cast into a problem of
looking for the most similar example. Some
common problems, such as construction of a
knowledge base and alert correlation, arising in meta
intrusion detection, can be dealt with in
straightforward ways. The results of some
experiments with the 1998 and 2000 DARPA
datasets have demonstrated the potential of this
approach.

References:
[1] Debar, H., France Telecom, Curry, D.,

Guardian, Feinstein, B. and TNT. IDMEF.
http://www.ietf.org/internet-drafts/draft-ietf-
idwg-idmef-xml-14.txt.

[2] Forrest, S., Hofmeyr, S., Somayaji, A. and
Longstaff, T. A sense of self for Unix process. In
Proceedings of the 1996 IEEE Symposium on
Computer Security and Privacy, IEEE Computer
Society Press, pp. 120-128.

[3] Forrest, S. Hofmeyr, S. and Somayaji, A.
Computer Immunology, Communication of the
ACM, v.40 no.40, pp. 88-96.

[4] Gould, R. Graph Theory, Benjamin/Cum-mings,
1988.

[5] Long, J., Schwartz, D., and Stoecklin, S., An
XML distance measure, The 2005 International
Conference on Data Mining (DMIN'05), Las
Vegas, Nevada, June 20-23, 2005.

[6] MIT Lincoln Laboratory. DARPA Intrusion
Detection Evaluation datasets,
http://www.ll.mit.edu/IST/ideval/.

[7] Poppi, S. 2004. Snort IDMEF output Plug-In,
http://sourceforge.net/projects/snort-idmef.

[8] Stoecklin, S., Schwartz, D.G., Yilmaz, E., and
Patel, M., A metadata architecture for case-based
reasoning. In Proceedings of The 2004
International Conference on Artificial
Intelligence (IC-AI'04), Las Vegas, NV, June 21-
-24, 2004, pp. 790--794.

[9] Snort, available at http://www.snort.org.

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp260-269)

http://www.ietf.org/internet-drafts/draft-ietf-idwg-idmef-xml-14.txt
http://www.ietf.org/internet-drafts/draft-ietf-idwg-idmef-xml-14.txt
http://www.ll.mit.edu/IST/ideval/
http://sourceforge.net/projects/snort-idmef/
http://www.snort.org/

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp260-269)

	1 Introduction
	
	
	2 Case-Based Reasoning

	An XML Similarity Measure
	Distance measures are used extensively in data mining and other types of data analysis. Such measures assume it is possible to compute for each pair of domain objects their mutual distance. Most distance measures work with attribute-value representations
	An XML document is a collection of XML elements organized in a tree structure in which there is one root element. An XML element can be represented as 3-tuple [e, A, E] where e is the name of the element, A is the attribute set of the element and E is th
	Given two elements [e1, A1, E1] and [e2, A2, E2], their distance is given as (dis(A1,A2)+dis(E1,E2))/2, if e1=e2, otherwise, it is the maximal value 1, where dis(A1,A2) is the distance between their attribute sets and dis(E1,E2) is the distance

