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Abstrac: This paper presents an estimator to wireless HDTV (High Definition Television) using the
LMS (Least Mean Square) Criterion. This method evaluates the parametersκ − µ or η − µ for Yacoub
Distribution and the parameterm for Nakagami Distribution from simulated data. These distributions
model the fast fluctuation of envelope of a received signal composed of clusters of multipath waves
propagating in a non-homogeneous environment. The procedure to estimate these parameters uses the
pdf (probability density function) obtained from receivedsignal. The signal is generated using two
fading channel simulator development by author. The resultsshow that the Yacoub´s Distributions
provides a best fitting to simulated data than Nakagami-m Distribution. The Yacoub’s distributions have
two parameters to estimate, while the Nakagami distribution have just one parameter. The analysis of
the received signal and the estimated curves confirm that there is a very good agreement between the
estimated parameters from signal and the parameters used togenerated the correspondent signal.
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1 Introduction

Traditionally, the performance of communicati-
ons systems was take using the additive noise, such
AWGN (Additive White Gaussian Noise). Unhap-
pily, there are a phenomenon more complicated
and complex, that limits the performance drasti-
cally: the multipath. This phenomenon is know
by ”ghost”. The multipath phenomenon results in
two degradation in the receiver signal. When the
multipath delay profile is characterized by standard
deviation that is minor that the symbol duration,
the receiver’s antenna catches many signals from
same symbol transmitted. The result is the fluc-
tuation of amplitude of signal received, occurs an
intra-symbol interference, characterizing the effect
denominated fading. We can’t resolve this effect,
but we can mitigate using an AGC (Automatic
Gain Control) and diversity techniques. In other
way, when the standard deviation is greater that
the symbol duration, the receiver’s antenna catches
many signals from different symbols. This pheno-
menons is know as ISI (Inter Symbol Interference),
the receiver signal is a linear combination of many
symbols. This last effect can be mitigated using
adaptive equalization. Then, we can characterize
fading although of reception of an infinity number

of waves from reflection, diffraction and scattering
of transmitter signal in propagation environment.
An deterministic analysis is very difficult because
the phenomena involved is complex and the charac-
terization of all them is a hard target. Many papers
in the literature show that the stochastic approach
is more adjusted and fits perfectly to experimental
data.

The well-know distributions are Rayleigh (1889
by John William Strutt) [1], Hoyt (1947 by R. Hoyt)
[2], Rice (1948 by S. O. Rice) [3] and Nakagami-m
(1960) [4]. In all this model the phases of a cluster
of waves are random and have equal delay time,
characterizing a frequency non-selective channel.
This characteristic allows one to use the Center
Limit Theorem. Then, the summation of various
waves that arrive at receiver results in two complex
Gaussian processes with in-phase and quadrature
Gaussian distributed variables and with equal me-
ans and standard deviations. This set of waves is
denominated of cluster. Admitting that the in-phase
and quadrature Gaussian distributed variables have
means equal to zero and equals standard deviations,
then it allows to model an environment of pro-
pagation without a dominant component over the
scattered waves (a situation of Non-Line of Sight),
then the Rayleigh distribution is obtained. With a
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little modification, the Hoyt model can be obtained
adopting two complex Gaussian processes with in-
phase and quadrature components with different
standard deviations.

If the components in-phase and quadrature Gaus-
sian are distributed variables with equal standard
deviations, but means different of zero, it allows
to model an Rice environment. Is obvious that the
Rayleigh distribution is a particular case of Rice
distribution.

From experimental data Nakagami-m signal can
be seen as combination of clusters from different
multipath waves with no dominant components
within any cluster. These four distribution models
consider the propagation in a homogeneous envi-
ronment.

In 2001, Professor Michel Daoud Yacoub got two
general model that considers the received signal
composed by summation ofn clusters (Raleigh
or Hoyt) [5] [6]. This distribution includes Ray-
leigh, Hoyt, Rice and Nakagami-m as special cases.
These model are called Yacoub’s Distributions or,
for simplicity, κ − µ or η − µ - the physical
parameters of distribution. Professor Yacoub con-
siders your distributions ”composed of clusters of
multipath waves propagating in a homogeneous
environment. Within any cluster, the phases of the
scattered waves are random and have similar times
delay with delay-time spreads of different clusters
being relatively large. The clusters of multipath
waves are assumed to have the scattered waves with
identical powers but within each cluster a domi-
nant component is found that presents an arbitrary
power [5]”. In this case, the summation of clusters
results in theκ − µ or η − µ Distributions and the
Center Limit Theorem is not valid. Thus, we have
a non-homogeneous propagation model. Physically,
the κ parameter represents the ratio between the
total power of the dominant components and the
total power of the scattered waves. The parameter
µ represents the number of cluster that form the
received signal. And theη is the ratio between in-
phase and quadrature variations. The Table 1 shows
the abstracts about this six models.

This paper is organized as follows: Section 2
presents an overview about Yacoub’s (κ − µ and
η−µ) Distributions and Nakagami-m Distribution.
Section 3 introduces the Least Mean Square algo-
rithm and shows the partial differentiation equations
to κ − µ , η − µ and Nakagami-m Distributions.
Section 4 will show the curves for PDF and CDF
using fading generator for Yacoub’s Distributions

TABLE 1

THE MODELS FOR FADING.

Models Clusters Mean Standard Variations

Rayleigh 1 0 σ1 = σ2

Hoyt 1 0 q = σ1/σ2

Rice 1 A σ1 = σ2

Nakagami-m m 0 σ1 = σ2

κ − µ µ p, q σ1 = σ2

η − µ 2µ 0 η = σ2

1/σ2

2

and the curves estimated using LMS algorithm.
Finally, Section 5 presents the conclusions.

2 The models to κ − µ, η − µ and
Nakagami-m Distributions
2.1 The κ − µ Distribution

Theκ−µ Distribution was presented by Yacoub
in [5]. The envelope for Yacoub’sκ−µ Distribution,
r, can be written in terms of the in-phase,xi , and
quadrature,yi , components of the fading signal as
[5]

r2 =

n
∑

i=1

(xi + pi)
2 +

n
∑

i=1

(yi + qi)
2, (1)

wherexi andyi are mutually independent Gaussian
processes with meanE[xi] = E[yi] = 0 and
varianceV ar[xi] = V ar[yi] = E[x2

i ] = E[y2
i ] =

σ2 [5]. The pi andqi values are the mean value of
the in-phase and quadrature components of theith

cluster, respectively. Theκ − µ model can be un-
derstanding by summation ofµ Rayleigh clusters.

The κ − µ probability density function of the
envelope signal can be written as [5]

p(ρ) =
2µ(1 + κ)

µ+1

2

κ
µ−1

2 exp(κµ)
ρµ exp (−µ(1 + κ)ρ2)

Iµ−1 (2µ
√

κ(1 + κ)ρ),

(2)

and represent the small scale variation of the fading
signal with enveloper and normalized envelope
ρ = r

r̂
, wherer ≥ 0 and r̂ =

√

E[r2].
By definition [5], κ is given by

κ =

∑n
i=1

(p2
i + q2

i )

2nσ2
, (3)

and is the ratio between the total power of the
dominant components and the total power of the
scattered waves. The mean squared value, variance
of power andκ physical parameters are continuous
andn is discrete. This limitation can be made less
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stringent by defining a parameterµ being the real
extension ofn, given by [5]

µ =
E2[r2]

V ar[r2]
×

1 + 2κ

(1 + κ)2
· (4)

Note thatµ = n is the number of clusters.

2.2 The η − µ Distribution
This model represent the summation ofn clusters

of propagation. where each cluster is represent by
Hoyt model. Then, the envelope for Yacoub’sη−µ
Distribution, r, can be written in terms of the in-
phase,xi , and quadrature,yi, components of the
fading signal as [6]

r2 =
n

∑

i=1

x2
i +

n
∑

i=1

y2
i , (5)

wherexi andyi are mutually independent Gaussian
processes with meanE[xi] = E[yi] = 0 and
variances given byV ar[xi] = E[x2

i ] = σ2
x and

V ar[yi] = E[x2
y] = σ2

y , of the ith cluster [6].
The probability density function forη − µ en-

velope r, p(r), can be found using the standard,
but long and tedious procedure of transformation
of variables [7]. Here, we just list the equation for
p(ρ) with normalized envelope signal forη − µ
distribution:

p(ρ) =
4
√

πµµ+
1

2 hµρ2µ

Γ(µ)Hµ− 1

2

exp(−2µhρ2)×

Iµ− 1

2

(

2µHρ2
)

,

(6)

where ρ = r
r̂

(r ≥ 0) , r̂ =
√

E[r2] is the rms
value ofr, and the parametersh andH are written
as

h =
2 + η−1 + η

4
=

(1 + η)2

4η
(7)

H =
η−1 − η

4
=

1 − η2

4η
(8)

By definition [6],η andµ are, respectively, given
by

η =
σ2

x

σ2
y

and µ =
E2[r2]

V ar[r2]
×

1 + η2

(1 + κ)2
· (9)

In η − µ distribution n = 2µ, where n is the
number of clusters.

2.3 The Nakagami-m Distribution
By definition, the Nakagami-m signal is compo-

sed by summation ofm Rayleigh signals [8]. This

way, the signal envelope,r , modeled by Nakagami-
m Distribution, is given by

r2 =
m

∑

i=1

r2
i , (10)

where each componentri , i = 1, 2, ..., m , cor-
responds to one Rayleigh envelope. The pdf for
Nakagami-m Distribution and normalized envelope
signal is given by [4]

p(ρ) =
2mm

Γ(m)
ρ2m−1 exp(−mρ2)· (11)

where

m =
E[r2]

V ar[r2]
(12)

3 Least Mean Square(LMS) Criterion
The Least Mean Square(LMS) Criterion can be

used to estimate theκ − µ , η − µ or Nakagami-
m parameters. This distributions allows has better
results in model real channel behavior. The channel
estimation is performed by the adjust of theκ , η , µ
andm parameters in each distribution. It is interes-
ting to use this general fading distributions because
it includes the well know fading distributions [5]
[6]. This is performed by setting the appropriated
parameter value that adjust the pdf theoretical curve
with the real (simulated) curve.

The LMS criterion is used in many problems of
physics and engineering because the error surface
obtained from this formulation have a concave ge-
ometry. The idea is find the equation to update the
parameters that drive the error to global minimum.

First, we must defined the error function. We
work with the pdf obtained from practical data
(simulated data) and the theoretic pdf curves. The
LMS Criterion consists in minimize the following
equation

∂

∂ξ

N
∑

i=1

[p(ρi) − p̂(ρi)]
2 → 0 (13)

where ∂
∂ξ

, p(ρ) , p̂(ρ) corresponds the partial
differentiation in relation toξ (parameters to each
distribution), the simulated pdf and the estimated
pdf, respectively. The LMS criterion is based on
mean square error difference between the simulated
pdf, p(ρ), and the estimated pdf,̂p(ρ). The LMS
algorithm updates theξ parameters to decrease the
error between the pdf’s. The partial differentiation
equations in relation toξ used to drive the algorithm
to minimum in Yacoub’s (κ − µ and η − µ) and
Nakagami-m Distribution are:
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κ − µ Estimation

∂

∂κ
p(ρi) =

ρµ
i exp(−µ(1 + κ)ρ2

i )

exp(κµ)

{[

(µ2 + µ)(1 + κ)
µ−1

2

κ
µ−1

2

−
2µ2(1 + κ)

µ+1

2

κ
µ−1

2

+
(µ − µ2)(1 + κ)

µ+1

2

κ
µ+1

2

]

×

Iµ−1(Z) −
2µ2(1 + κ)

µ+1

2

κ
µ−1

2

ρ2
i Iµ−1(Z) +

(1 + 2κ)
√

κ(1 + κ)

µ2(1 + κ)
µ+1

2

κ
µ−1

2

ρi

[

Iµ−2(Z) + Iµ(Z)

]}

(14)

∂

∂µ
p(ρi) =

(1 + κ)
µ+1

2 ρµ
i exp(−µ(1 + κ)ρ2

i )

κ
µ−1

2 exp(κµ)

{

[

2 + µ ln
(1 + κ

κ

)

− 2µκ
]

Iµ−1(Z)+

2µ
[

ln(ρi) − (1 + κ)ρ2
i

]

Iµ−1(Z) + 2µρi

√

κ(1 + κ)
[

Iµ−2(Z) + Iµ(Z)
]

} (15)

whereZ = 2µ
√

κ(1 + κ)ρ.

η − µ Estimation

∂

∂η
p(ρi) =

4
√

πµµ+
1

2 hµ

Γ(µ)Hµ− 1

2

ρ2µ
i exp(−2µhρ2

i )

{

(−η−2 + 1

4

)

Iµ− 1

2

(Z)
[µ

h
− 2µρ2

i

]

+

(−η2 − 1

4

)

[

−(µ − 1

2
)

H
Iµ− 1

2

(Z) + µρ2
i

[

Iµ− 3

2

(Z) + Iµ+
1

2

(Z)
]

]}

.

(16)

∂

∂µ
p(ρi) =

4
√

πµµ+
1

2 hµ

Γ(µ)Hµ− 1

2

ρ2µ
i exp(−2µhρ2

i )

{

Iµ− 1

2

(Z)
[

ln
(µh

H

)

+
µ + 1

2

µ
−

Ψ(µ) + 2 ln(ρi) − 2hρ2
i

]

+ Hρ2
i

[

Iµ− 3

2

(Z) + Iµ+
1

2

(Z)
]

} (17)

whereZ = 2µHρ2.

Nakagami-m Estimation

∂

∂m
p(ρi) =

2mmρ2m−1

i exp(−mρ2)

Γ(m)

{

[

(1 + ln(m) + 2 ln(ρi) − ρ2
i )

]

− Ψ(m)

}

(18)

whereΨ(m) = Γ
′

(m)/Γ(m).
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Fig. 1. The simulated and estimated pdf and cdf curves. Simulated signal with κ = 0.75 andµ = 1.50. Estimatedκ = 0.72

andµ = 1.51. Nakagami parameter was estimated tom = 1.74
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Fig. 2. The simulated and estimated pdf and cdf curves. Simulated signal with η=0.25 andµ=1.00. Estimatedη=0.26 and
µ=0.99. Nakagami parameter was estimated tom=1.60.

4 Simulations
The envelope of a received signal was obtained

using a fading channel simulation forκ − µ and
η − µ Distributions [9] [10]. The LMS algorithm
estimates theκ− µ , η − µ andm parameters that
produce the pdf and cdf curves plotted in Figures
1 and 2. The signal Yacoub’sκ − µ was modeled
with fading for f = 900 MHz, v = 60 km/h,
κ = 0.75 andµ = 1.50. While the Yacoub’sη − µ
signal envelope has fading withf = 900 MHz,
v = 60 km/h, η = 0.25 andµ = 1.00, Figure 3.

5 Conclusions
This paper proposed a method to estimate the

fading of a received data using Yacoub’s Distri-
butions and Nakagami-m Distribution. The model
shows that Yacoub’s Distributions has a better
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Fig. 3. The simulated envelope signal withη=0.25 andµ=1.
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attempt results to simulated data than Nakagami-
m Distribution. The Yacoub’s Distribution yield a
better fitting tail to simulated data while Nakagami-
m Distribution just produces a good fitting around
the mean. The Yacoub’s Distributions are easily ad-
justable because they use two estimated parameters.
If the experimental data cdf is above Nakagami-m
cdf, a best fitting is found using Yacoub’sκ − µ
Distribution. In the other hand, if the simulated
data cdf is below Nakagami-m cdf a better attempt
is found by Yacoub’sη − µ Distribution. The
next work is to develop the estimative for these
parameters using the moments of distributions.
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