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Abstract: - Privacy is an important issue in data mining. Learning a Bayesian network (BN) from privacy 
sensitive data has been a recent research topic. In this paper, we propose to use a post randomization technique 
to learn Bayesian network parameters from distributed heterogeneous databases. The only required information 
from the data set is a set of sufficient statistics for learning Bayesian network parameters. The proposed method 
estimates the sufficient statistics from the randomized data. We show both theoretically and experimentally that, 
even with a large level of randomization, our method can learn the parameters accurately.   
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1. Introduction 
Privacy-preserving data mining deals with the 
problem of building accurate data mining models 
over aggregate data, while protecting privacy at the 
level of individual records. There are two main 
approaches to privacy-preserving data mining. One 
approach is to perturb or randomize the data before 
sending it to the data miner. The perturbed or 
randomized data are then used to learn or mine the 
models and patterns [1]. The other approach is to 
use secure multiparty computation (SMC) to enable 
two or more parties to build data models without 
every party learning anything about the other party’s 
data [3]. Privacy-preserving Bayesian network (BN) 
learning is a more recent topic. Wright and Yang [9] 
discuss privacy-preserving BN structure 
computation on distributed heterogeneous databases 
while Meng et al. [7] have considered the 
privacy-sensitive BN parameter learning problem. 
The underlying approach in both works is to convert 
the computations required for BN learning into a 
series of inner product computations and then to use 
a secure inner product computation method. The 
number of secure computation operations 
increases exponentially with the possible 
configurations of the problem variables. The 
current work on privacy-preserving BN 
learning focuses on the multiparty model, which 

requires that every party have some ability to 
compute. Besides this model, our paper 
considers a model where there is a data miner 
who actually does all the computations on 
behalf of the participating parties. SMC method 
has the following two drawbacks: (1) it assumes a 
semi-honest model, which is often unrealistic in the 
real world (2) it requires large volumes of 
synchronized computations among participating 
parties. Most of the synchronized computations are 
overheads due to privacy requirements. Post 
randomization overcomes the drawbacks of SMC 
method by some trade off between accuracy and 
privacy. A malicious party who does not obey the 
protocol in SMC method can easily get some private 
information of other parties while no party is able to 
get exact private information of other parties if post 
randomizations are implemented to individual data 
records.  

2. Problem Formulation 
The privacy-preserving BN learning involves 
distributed databases, where the database is owned 
by several parties. If the database is homogeneously 
distributed, privacy-preserving BN Learning is 
relatively easy since every party can send data miner 
(or other parties) the set of sufficient statistics from 
his part of the database. Privacy of individual 
records will not be breached by sending sufficient 
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statistics to other parties or data miner. The problem 
of privacy-preserving BN learning from 
heterogeneous database is that several parties who 
each own a vertical portion of the database want to 
learn a global BN for their mutual benefits but they 
are concerned about the privacy of their sensitive 
variables. In this paper, we consider the BN 
parameter learning problem for the discrete variable 
case. Extensions to BN structure learning are 
possible and would be reported in a future 
publication. We consider the following two models.  
Model I: There is no data miner; every party has to 
do some portion of learning computations, which 
corresponds to the multi-party model of SMC. 
Every party sends their randomized data to those 
parties who need those data.  
Model II: There is a data miner who does all 
computations for the participating parties. Each 
party simply sends all its randomized data to the 
data miner. 

3. Privacy Quantization 

Consider a database D with n variables }{ 1 nXX Λ , 

where Xi takes discrete values from the set Si. The post 
randomization for variable Xi is a (random) mapping 

iii SSR →: , based on a set of transition 

probabilities )|~( limi
i
lm kXkXpp === , where 

ilm Skk ∈,  and iX~ denotes the (randomized) variable 

value corresponding to variable Xi. The transition 

probability i
lmp  is the probability that a variable Xi 

with original value kl is randomized to the value km. 
Post Randomization is so named because the 
randomization happens after data have been collected. 

Let }{ i
lm

i pP = denote the ii KK × matrix that has 

i
lmp  as its thml ),( entry, where Ki is the cardinality of 

Si. The condition that Pi is nonsingular has to be 
imposed if we want to estimate the frequency 

distribution of variable Xi from the randomized 
variables. In the following, we give out some simple 
but effective post randomization schemes on which 
our experiments are based.  If variable Xi takes 
binary values, we can use Binary Randomization as 
shown in Fig. 1(a). If the variable is ternary, ternary 
symmetric channel as shown in Fig. 1(b) can be used. 

  
Fig 1.  Randomization Schemes 

We can apply the same randomization schemes 
independently to all of the variables: uniform 
randomization to the data set. Alternatively, we can 
use a non-uniform randomization where different 
post randomization schemes are applied to different 
variables independently. The non-uniform 
randomization is effective when different variables 
have different sensitivity levels. For example, we 
can choose different randomization parameters p1 
and p2 to different binary variables for non-uniform 
randomization if the privacy requirements of the two 
variables are different. The non-uniform 
randomization includes the special case when there 
is no privacy requirement for some of the variables. 
From the above, we can see that if variable iX takes 

iK values (or categories), the dimension of iP will 

be ii KK × . With larger iK , more randomization is 

introduced into variable iX in general. This is good 
from a privacy point of view. However, the variance 
of the estimator for frequency counts will also be 
lager under the same sample size. One solution for 
this problem is to partition the Ki categories into 
several groups such that a value in one group can 
only be randomized to a value in the same group. In 
this case, matrix Pi becomes a block diagonal 
matrix. The problem of how many groups should 
the Ki values be partitioned into is a matter of 
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design choice.  
The post randomization can also be implemented to 
several variables simultaneously. For example, the 
variables Xi and Xj can be randomized 
simultaneously according to transition probability 

),|~,~( 2121 kXkXlXlXp jiji ==== . 

Randomizing variables simultaneously can avoid 
the possible inconsistency of the database caused by 
randomization. 
We consider the notion of privacy introduced by 
Evfimievski et al. [4] in terms of an amplification 
factor γ . In [4], the amplification γ is proposed in a 
framework where every data record should be 
randomized with a factor greater than γ, before the 
data are sent to the data miner, to limit privacy 
breach. However, in this paper, we use 
amplification γ purely as a worst-case quantification 
of privacy for a designed post randomization 
scheme. It is proved in [4] that if the randomization 

operator is at most γ amplifying, revealing kXi =
~  

will cause neither an upward ρ1-to- ρ2 privacy 
breach nor a downward ρ2-to- ρ1 privacy breach if 

γ>
ρ−
ρ−

ρ
ρ

2

1

1

2

1
1 . Clearly, the smaller the value of γ, 

the better is the worst case privacy. Ideally we 
would like to have 1=γ . The at most 
γ amplification provides a worst case quantification 
of privacy. However, it does not provide any 
information of privacy in general. Besides γ, we use 

}0)|'~(|{#min >===
′

kXkXPkK iik
, which is the 

minimum number of possible categories that can be 
randomized to category 'k  in a designed post 
randomization, as another quantification of privacy. 
This K indicates the privacy preserved in general. It 
is similar to the K defined in K-anonymity in [8] but 
in probabilistic sense. If we group the categories of 
a variable into several groups, then K becomes 
smaller in general 

4. Parameter Learning Framework 

For parameter learning, we assume the structure G is 
fixed and known to every participating party. For 
Model I, we use the definition of cross variable and 

cross parents defined in [3]. ijkN  is the number of 

records such that iX  is in kth category while its 

parents are in jth category. 

For each party ia :  

(1) Randomize cross parents belong to its own party 
according to their respective privacy requirements 
using post randomization described in Section 3. 
Randomizations are done independently for each 
(combined) variable and each record. (2) Send 

randomized cross parents of party ia  for party ja  

to party ja  together with the probability transition 

matrix used. (3) Learn parameters for local 

variables in party ia . This step does not involve 

randomized data. (4) Estimate the sufficient 

statistics ijkN s for each cross variable belonging to 

its own party ia  using local data and randomized 

parent data from other parties. (5) Compute the 
parameters for cross variables using the estimated 

sufficient statistics ijkN̂ s. (6) Share the parameters 

with all other parties. Variables in one party are not 
randomized for its own calculations. 
Steps of learning parameters for Model II: 
For each party ai: 
(1) Randomize all its sensitive variables according 
to their respective privacy requirements using post 
randomization described in Section 3. 
Randomizations are done independently for each 
(combined) variable and each record. (2) Send 
randomized data and their corresponding 
probability transition matrices to the data miner. 
For the data miner: 
(1) Estimate the sufficient statistics Nijk for each 
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node Xi using the randomized data from participated 
parties. (2) Estimate the parameters using the 

estimated sufficient statistics ijkN̂ . (3) Broadcast the 

parameters to all parties. 
The details of estimation of sufficient statistics and 
parameter (step 4 and 5 for Model I, Step 1 and 2 for 
data miner in Model II) from randomized data are 
described in Section 5. 

5. Estimation of BN Parameters  
The problem of privacy-preserving BN Parameter 
learning can be decomposed into a set of estimation of 
Nijk s for each node Xi and a given fixed structure G 
from the randomized data D~ . Consider the 
following general case: Variable Xi with cardinality 

Ki has Q parent nodes )(,),1( QPaPa ii Λ . The 

cardinality of )(qPai  is )(qPai
K . These variables 

can be arbitrary vertically partitioned to different 
parties in both models. The randomization of each 
(combined) variable can also be done by grouping 
the categories of the variables into groups. We have 
the following different cases for estimating Nijk s 
from the randomized data D~  due to simultaneous 
randomization: (a) Xi and its parents are all 
randomized independently each other. (b) Some 
parents of Xi are randomized simultaneously. (c) Xi 
is randomized simultaneously with some of its 
parents. (d) Xi is randomized simultaneously with 
non-parent variables. 
For (b) and (c) above, we can consider the 
simultaneously randomized variables as combined 
variables in estimating the sufficient statistics. For 
example, if variable Xi is randomized 

simultaneously with one of its parents )1(iPa , Nijk 

is equal to the number of records such 

that ),())1(;( 1jkPaX ii = , 2)2( jPai = ,…, 

Q
i jQPa =)( , where ))1(;( ii PaX is a combined 

variable. Thus, we can estimate the Nijk s from the 

randomized data by considering ))1(;( ii PaX as a 

single variable with cardinality )1(
iPai KK × . For 

case (d), since the current Nijk does not involve the 
variable randomized simultaneously with Xi, the 
learner can get the marginal transition probability 
matrix from the given transition matrix of the 
combined variable. 
From the above arguments, we conclude that the 
cases (b), (c), and (d) above can effectively be 
considered to be equivalent to case (a). Hence, 
without loss of generality, we can discuss case (a) 

only. We denote by )( iXPa  as a compound 

variable for all the parents of Variable iX . Hence 

)( iXPa  takes ∏
=

=
Q

q
qPai i

KJ
1

)(  different values. 

∑
=

=
iK

k
ijkij NN

1
 and iN  is ii KJ  dimensional vector 

of Nijk values, that is 
t

KiJiKiiii iii
NNNNNN ),,,,,( 2111211 ΛΛ= , where 

superscript t denotes matrix transpose. Ni(l) is an 

element of Ni. ijkN~ , ijN~ , and iN~  are defined 

similarly as Nijk, Nij, and Ni, respectively but for the 

randomized data D~ . ijkN̂ , ijN̂ , and iN̂  are 

estimators of ijkN , ijN , and iN  respectively. 

Given the training data D with N records of 

variables iX  and its Q parents in the above general 

case, if they are post-randomized with probability 

transition matrices iP , )1(iPaP , …, )(QPai

P  

respectively, we have the following theorem. 

Theorem 1: i
t

i NPDNE =]|~[ ,  where 
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ipai PPP ⊗=  and )()1( Qpapapa iii

PPP ⊗⊗= Λ , 

⊗  denotes Kronecker matrix product. Moreover, 

∑
=

=
ii KJ

l
lii VlNDNCov

1
)(]|~[ , where lV is a 

iiii JKJK ×  matrix with ),( 21 ll th element 

⎩
⎨
⎧

≠−
=−

=
2121

2111
21 ),(),(

)),(1)(,(
),(

llllPllP
llllPllP

llVl . 

Proofs are omitted here due to the page limitations. 
Interested readers can refer to a longer version of 
this paper for details [6]. The following theorem 
establishes the bias and variance of the 

estimator i
t

i NPN ~)(ˆ 1−= . Its proof is 

straight-forward and is omitted.  

Theorem 2: i
t

i NPN ~)(ˆ 1−=  is an unbiased 

estimator for iN  and =}|ˆ{ DNCov i  

)}(|~{)( 11 −− PDNCovP i
t , where P and 

}|~{ DNCov i  are as defined in Theorem 1. 

We use the estimated sufficient statistics to get ML 

estimate of the parameter as 

∑
=

==θ
iK

k
ijk

ijk

ij

ijkML
ijk

N

N
N
N

1

ˆ

ˆ
ˆ
ˆ

ˆ  

and the MAP estimate of the parameter as 

ijij

ijkijk
ijk N

N
ˆ
ˆ

ˆ
+α

+α
=θ , where we assume the prior 

distribution of ijθ  is Dirichlet with parameter 

},,,{ 21 iijrijij ααα Λ .  

6. Experimental Results 
In this experiment, we use the Bayesian Network 
shown in Fig. 2, where the variables are distributed 
over three sites. All variables are binary except 

variables L and B which are ternary. The conditional 
probabilities of the different nodes are also shown. 
20000 samples were generated from this Bayesian 
Network to form the dataset D. 
This data was then randomized according to the 
scheme described in Table 1, where variables T, S, 
and G were considered not sensitive and hence not 
randomized. The corresponding at most 
γ amplification is also shown in Table 1. K=2 for 
Binary randomization while K=3 for ternary 
randomization. Table 2 shows a part of parameters 
learnt from the randomized data using the algorithm 
described in Section 4 for model II.1 The remaining 
part can be calculated by one minus the given part. 
All the values in the Table are average over 5 runs, 
with the corresponding standard deviation indicated 
in parenthesis. It is clear from the Table that the 
proposed algorithms can accurately learn the BN 
parameters for both scenarios, even for moderate 
levels of randomization.  
 
 
 
 
 
 
 
 
 
 
A 0.7,0.3 T 0.1,0.9,0.9,0.1 
S 0.5,0.5 L 0.3,0.7,0.4,0.15,0.3,0.15
X 0.2,0.6,0.8 ,0.4 F 0.25,0.9,0.75,0.1 
E 0.25,0.8,0.15,0.5,0.3,0.4,0.75,0.2,0.85,0.5,0.7,0.6 
D 0.7,0.65,0.1,0.4,0.8,0.35,0.3,0.35,0.9,0.6,0.2 ,0.65
C 0.9,0.4,0.6,0.25,0.1,0.6,0.4,0.75 
B 0.8 ,0.15,0.1,0.5,0.1,0.35 
G 0.2,0.4,0.8,0.6 

Fig. 2  A Bayesian Network 
 

                                                        
1 Less randomization occurs in Model I, so the results for 
Model I were better than those for model II. We present 
only the results for model II here.  
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A,D Binary symmetric  25.021 == pp , 3=γ  
L,B Ternary symmetric 15.021 == pp  67.4=γ  
E Binary symmetric  2.021 == pp   4=γ  
X Binary symmetric  2.021 == pp   4=γ  
C,F Binary 1.01 =p  25.02 =p  9=γ  

Table 1: Randomization performed 

A 0.70(0.70) T 0.10(0.50) 0.90(0.77) 
S 0.50(0.00) X 0.20(0.80)0.60(1.1) 
L 0.30(0.49)0.71(0.57)0.39(0.64)0.14(0.55)      
B 0.80(0.77)0.16(0.41)0.094(0.71)0.49(0.73)     
E 0.25(0.20)0.81(0.90)0.14(2.7)0.51(1.2) 

0.31(2.6)0.41(2.34) 
D 0.69(2.2)0.65(1.3)0.11(3.3)0.38(0.77)0.79(1.7)  

0.39(5.65) 
C 0.90(2.0)0.38(1.6)0.61(2.6)0.25(2.1) 
F 0.24(0.73)0.91(1.1) 
G 0.20(0.30) 0.40(0.29) 

Table 2: Mean and standard deviation (×10-2 ) over 5 
runs of parameters learnt from the randomized data. 

7. Conclusion 
We have proposed a post randomization technique 
to learn parameters of a Bayesian network from 
distributed heterogeneous data. Our method 
estimates the sufficient statistics from the 
randomized data, which are subsequently used to 
learn the parameters. Our experiments show that the 
post randomization is an efficient, flexible and 
easy-to-use method to learn Bayesian network from 
privacy sensitive data. Post Randomization method 
can be easily upgraded to learn BN Structures from 
sensitive data. It is clear that it can also be applied 
to Privacy-Preserving decision tree learning.   
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