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Abstract: We present a hybrid system for classification of EEG signals into the three classes of
mentation, relaxation and micro-sleep. The classifier is based on an neural representation of a ra-
dial conjunctive fuzzy system. Conjunctive fuzzy systems are the fuzzy systems which employ
fuzzy conjunctions for representation of IF-THEN structure of their rules. Radial fuzzy sys-
tems have, in addition, IF parts represented by radial functions which helps to simplify their
computation model. GUHA data mining method and genetic algorithms are used for learn-
ing the classifier.
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1. Introduction

Analysis and classification of EEG signals
is nowadays well recognized area of interest
not only with respect to a medical research [1].
The other domains connected with the area are
biocybernetics and the area of study of man-
machine interactions where the special role is
played by design and manufacturing automatic
systems for indicating operators attention de-
crease episodes.

Compared by frequency, the most common
accidents related to the operators attention de-
crease phenomenon are connected with trans-
portation, especially, with trucks driving. Ev-
ery year substantial loses on lives and prop-
erty are reported in connection with accidents
caused by drivers attention decrease episodes.
Of course, other areas of man-machine interac-
tions are even more important with respect to
the damage extent of possible accidents. Let us
just mention airport traffic and power stations
control.

The research presented in the paper is the
contribution to a design of algorithms for an
automatic indication of emergency situations
caused by attention decrease episodes of human
operators. In our case, an operator’s attention

level is determined on the basis of measure-
ment, mathematical transformation and classi-
fication of EEG signals. More precisely, raw
EEG signals which are measured on operator’s
head, are transformed to EEG spectrograms
which are classified into three classes of men-
tation, relaxation and micro-sleep.

The classifier is build in the form of a neuro-
fuzzy system. The fuzzy part of the classifier is
treated in the form of a radial conjunctive fuzzy
system. The neural part, i.e., the neural repre-
sentation, corresponds to a radial neural basis
network concept. The representation of the sys-
tem allows the data mining and genetic algo-
rithms to be used for its structure and parame-
ter learning, respectively.

The organization of the paper is as follows:
In the next section we review the concept of
a radial conjunctive fuzzy system (radial C-
FS), its properties, computational model and
the neural representation of such a system. In
the third section we discuss learning of intro-
duced neuro-fuzzy system. Section four con-
sists of description of EEG data, i.e., how they
are obtained, what is its structure and how they
are pre-processed so that they can by classi-
fied by the presented classifier. The fifth sec-
tion presents the results obtained with respect
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to the classification and few remarks on the fu-
ture research.

2. Radial conjunctive fuzzy systems

In the area of fuzzy computing, there are rec-
ognized two approaches to the representation of
IF-THEN rules and their groups - rule bases [3].
These are so called the conjunctive and the im-
plicative approach. In conjunctive approach IF
part of a rule (the antecedent) is combined with
the THEN part (the consequent) by a fuzzy con-
junction and individual rules are combined by a
fuzzy disjunction. In the implicative approach
an antecedent is combined with the consequent
by a fuzzy implication and individual rules are
combined by a fuzzy conjunction. In this paper
we are interested in the first approach.

Mathematically, the rule base of a conjunc-
tive fuzzy system is written as

RB(x, y) =
m∨

j=1

Aj(x) ? Bj(y), (1)

where Aj , Bj are fuzzy sets representing an-
tecedents and consequents of IF-THEN rules ,
j = 1, . . . , m (m ∈ N , m ≥ 2, is the number
of rules in the rule base). IF-THEN structure
of individual rules Rj is represented a fuzzy
conjunction, i.e., Rj(x, y) = Aj ? Bj . Typi-
cally, this fuzzy conjunction is the same as it is
used for building antecedents. Single rules are
then combined by a fuzzy disjunction

∨
(usu-

ally max is used) to obtain the representation of
whole rule base RB, as it is presented in for-
mula (1).

Fuzzy sets representing antecedents are gen-
erally multidimensional, defined on Rn space,
n ∈ N = 1, 2 . . . , and composed in the stan-
dard way from one-dimensional fuzzy sets Aji,
employing a t-norm ? as a fuzzy conjunction.
Formally we have

Aj(x) = Aj1(x1) ? · · · ? Ajn(xn), (2)

where x ∈ Rn, x = (x1, . . . , xn).
A fuzzy system has nominal consequents if

consequent fuzzy sets Bjs are defined on fi-
nite, generally unordered, universe of dis-

course Y of so called actions y1, . . . , yl,
i.e., Y = {y1, . . . , yl}, l ∈ N . Particu-
lar yks, k = 1, . . . , l, are treated as possible
actions, e.g., go right, go left or classes men-
tation, relaxation, micro-sleep without no or-
dering assumed. The value Bj(yk) then corre-
sponds to the membership degree µkj (indices
are switched) of action yk into the conse-
quent set Bj of the j-th rule.

A fuzzy system is radial if antecedents of
its IF-THEN rules exhibit the radial property.
The property refers to a shape preservation of
one-dimensional fuzzy sets in antecedents after
their combination by a t-norm. The formal def-
inition of radial conjunctive fuzzy systems (ra-
dial C-FSs) with nominal consequents follows:

Definition 1 A conjunctive fuzzy system with
nominal consequents is radial if :

(i) There exists a continuous function act :
[0, +∞) → [0, 1], act(0) = 1 as follows: (a)
either there exists z0 ∈ (0, +∞) such that act
is strictly decreasing on [0, z0] and act(z) = 0
for z ∈ [z0, +∞) or (b) act is strictly decreas-
ing on [0, +∞) and limz→+∞ act(z) = 0.

(ii) Fuzzy sets in antecedent and consequent
parts of the j-th rule are specified as

Aji(xi) = act

(∣∣∣∣
xi − aji

bji

∣∣∣∣
)

, (3)

Bj(yk) = µkj, (4)

where n,m, l ∈ N ; i,j, l = 1, . . . , n, m, l, re-
spectively; x ∈ Rn, x = (x1, . . . , xn);
yk ∈ Y = {y1, . . . , yl}; aj ∈ Rn, aj =
(aj1, . . . , ajn); bj ∈ Rn

+, bj = (bj1, . . . , bjn),
(i.e., bji > 0); µjk ∈ [0, 1]

(iii) For each x ∈ Rn the radial prop-
erty holds, i.e.,

Aj(x) = act( ||x− aj||bj
), (5)

where || · ||bj
is a scaled version of some norm

in Rn. This norm is common to all rules of the
fuzzy system.

Let us comment on the definition. According
to the definition a conjunctive fuzzy system is
radial if it satisfies three requirements:
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The first and the second require membership
functions of one-dimensional fuzzy sets form-
ing antecedents to they have a radial shape.
That is, to they be formed by an application of
a decreasing function act on a distance of ar-
gument x from a central point a. Examples of
act functions which lead to triangular or Gaus-
sian fuzzy sets are act(z) = max{0, 1 − z},
act(z) = exp(−z2), respectively. Examples of
these fuzzy sets are graphically presented pre-
sented in Fig. 1.
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Figure 1: (a) Triangular fuzzy set; (b) Gaussian fuzzy set

The radial property is specified by the third
requirement. As indicated, it refers to a radial
shape preservation property in antecedents of
rules. More specifically, it requires the mem-
bership function representing antecedents to be
radial and to have the same shape (act func-
tion) as one-dimensional fuzzy sets have. The
radial character of Aj is formalized by appli-
cation of act function on the distance of in-
put argument from a central point. The dis-
tance is computed employing a scaled version
of a norm in multidimensional spaceRn; and it
is required to scaling parameters correspond to
scaling parameters bji of one-dimensional sets
Aji. A scaled version of some norm || · || inRn,
with scaling parameter b = (b1, . . . bn), bi ≥ 0
is defined as ||u||b = ||u1/b1, . . . , un/bn|| for
u ∈ Rn. Moreover, central point aj ∈ Rn has
to be composed from central points aji of Aji

sets, i.e., aj = (aj1, . . . , ajn).
The property is not trivial. It means not all,

radial fuzzy sets can be combined with the all
the t-norms. For example triangular fuzzy sets
cannot be combined by the product t-norm in
such a way that the radial property holds. The
question which combination of t-norms and
act functions are allowed in order to the radial

property hold, are answered by the representa-
tion theorem, see [4].

2.1. Computational model of a radial C-FS
with nominal consequents

In order to build the computational model
of a radial C-FS with nominal consequents we
adopt the assumption of standard architecture
of whole fuzzy system [5], we assume that the
system is composed of four building blocks: 1)
singleton fuzzifier, 2) conjunctive rule base, 3)
CRI inference engine and 4) some defuzzifica-
tion block.

Under the assumption of the singleton fuzzi-
fier to be used in the system the general CRI
formula simplifies to the form of

B(yk) = RB(x, yk) (6)

for k = 1, . . . , l and x being the actual input to
the system. Combining this fact with the repre-
sentation of implicative rule base (1) we get

B(yk) =
m∨

j=1

Aj(x) ? Bj(yk). (7)

Introducing sets B′
j as those issuing from indi-

vidual rules we have B′
j(yk) = Aj(x) ?Bj(yk);

and representing fuzzy disjunction by maxi-
mum we have the above in form

B(yk)=max
j
{B′

j(yk)}=max
j
{Aj(x)?Bj(yk)}.

(8)
This computational model is standard well

known computational model of conjunc-
tive fuzzy systems. However, in radial systems
it is simplified as Aj(x) values can be eas-
ily computed employing the radial character
of antecedents. Moreover, the radial fuzzy sys-
tems can be easily transformed into the form of
a hybrid neuro-fuzzy system.

2.2. Neural representation

The neural representation of a radial C-FS with
nominal consequents is based on the concept
of radial basis functions (RBF) networks. The
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corresponding network is three-layered, feed-
forward network. The first layer is the input
layer with only identity transfer function, i.e.,

ui = xi. (9)

The second, hidden layer, consists of m hid-
den nodes hj which corresponds to antecedents
of individual rules Aj . Due to the radial prop-
erty hidden nodes form radial functions in Rn

space. Weights from the input layer to the hid-
den layer correspond to values 1/bji, i.e., to re-
ciprocals of scaling parameters of norm used in
representation of antecedents according to for-
mula (5). Incorporating weights into the com-
putation of hidden nodes we get the following
specification of hjs, j = 1, . . . , m computation:

hj(x) = Aj(x) = act( ||x− aj||bj
). (10)

The third, the output layer, consists of l out-
put nodes corresponding to the cardinality of Y
set. The computation of ok nodes, k = 1, . . . , l
is given as

ok=max
j
{hj(x)?µkj}=max{Aj(x)?Bj(yk)}.

(11)
The output of an ok node can be seen as pos-

sibility degree of taking action yk as overall in-
put of the system. If only single action is con-
sidered as the output, then the winner takes it
all strategy is adopted to determine the out-
put action or class. This can be seen as a vari-
ant of MOM (mean of maxima) defuzzification
method.

The main advantage of the presented neu-
ral representation is the possibility of bringing
learning algorithms known from neural com-
puting into the area of conjunctive radial fuzzy
systems. The next section is devoted to the
learning of presented neuro-fuzzy systems.

3. Learning of neuro-fuzzy classifier

Learning of a radial fuzzy C-FS in neural
representation consists from two subtasks of
structure and parameter learning. In this paper
we present an employment of GUHA data min-
ing method for the first task and genetic learn-
ing for the second subtask. In the following

two sections we present basic ideas of this ap-
proach. The details will be presented with re-
spect to the concrete task in the fourth section.

3.1. GUHA method

Structure learning consists in a specification
of a number of hidden nodes (rules) and ini-
tial setting of parameters of the network. In this
work we have employed GUHA data mining
method to perform this task. A limited intro-
duction to the method follows.

The GUHA data mining method is the
method of exploratory data analysis based
on logical and statistical principles. Its ori-
gins fall into to the mid-60 sixties of the last
century and from this times it is under contin-
ual developement at both levels - theoretical
and practical (software implementations).

The basic idea of the method is to mechan-
ically construct at the syntactical level (ex-
ploratory data analysis) relational patterns
over data an test effectively if these rela-
tions hold in the data at semantic level. Data
analyzed by GUHA method has form of a ta-
ble, where rows corresponds to objects and
columns to variables observed on these ob-
jects. A cell in the i-th row and the j-th column
contains a value of j-th variable for i-th ob-
ject.

Relational patterns are called hypotheses in
GUHA method. A hypothesis has form A ≈
S and consists of three parts - antecedent A,
succedent (consequent) S, and a generalized
quantifier ≈. Antecedent and succedent (to-
gether called as cedents) are in fact Boolean
conjunctions of a flexible length representing
Boolean properties of data. These conjunctions
are composed from elementary literals which
are called categories. Categories are set by user
of the method and they are devised from vari-
ables as subsets of their ranges. As an exam-
ple consider variable sex and its two categories
sex[male] and sex[female]; or variable age and
the category age[20,30], i.e., to be between 20
and 30. An example of compound cedent of
length two is sex[male] & age[20,30].
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Each cedent for each object can be evalu-
ated as true or false, simply by checking if
the corresponding values of variables fall into
the respective categories or not. If a value falls
into the category then the evaluation of this
category is 1 otherwise 0. The evaluation of
whole cedent is obtained according to laws
of Boolean logic for elementary conjunction.
Thus for pair sex=female and age=25 the eval-
uations of above categories is false and true, re-
spectively; and the evaluation of the compound
cedent is therefore false.

For a given pair of cedents, based on evalu-
ation for every object, we can construct contin-
gency table (four fold table, ff-table) consisting
of four integers a, b, c, d, where a is the num-
ber of object satisfying (evaluation is 1) simul-
taneously A and S, b is the number of object si-
multaneously satisfying A and not satisfying S
(evaluation is 0). Similarly c for non(A)&S, and
d for non(A)&non(S).

Based on a concrete ff-table for a certain
pair of cedents A, S and the chosen quanti-
fier, a hypothesis is evaluated as valid or in-
valid in GUHA sense. A quantifier is mathe-
matically represented by its associated function
which maps ff-tables (quadruples a, b, c, d) to
set {0, 1}. The form of this function depends
on the type of relations we are looking for in
the data. Most common are associative relations
such as “many objects satisfying (having the
property) A satisfy (have) also (the property)
S”; or “to have the property A is statistically de-
pendent with to have property S”. As an exam-
ple, let us show explicitly the associative func-
tion for the first case. The quantifier is called
founded implication (FIMPL) and its associ-
ated function has two parameters cp ∈ [0, 1]
driving the specificity and base ∈ N driv-
ing the support of hypothesis. The function de-
pends only on values a and b of a correspond-
ing ff-table, and mathematically is written as

FIMPL(a, b) =

=

{
1 if a ≥ base and a

a+b
≥ cp,

0 otherwise.
(12)

If, for a given hypothesis A ≈ S, the evalu-
ation of respective associated function (corre-
sponding to ≈) is 1 then hypothesis is taken
as valid otherwise as unvalid. The main power
of GUHA method lies in the fact that it tests
enormous number of hypotheses for their valid-
ity. The tested hypotheses, called relevant hy-
potheses, are built on the basis of syntactical
patterns specified by user. The patterns consists
in the specification of maximal lengths of both
antecedent and succedent, variables and cate-
gories used for building cedents and type of the
quantifier with setting its parameters. A hypoth-
esis satisfying these patterns is relevant hypoth-
esis and each relevant hypothesis is tested for
its validity. Valid hypotheses then form the out-
put of the GUHA method.

More details about the method can be found
in [7, 8, 9, 10].

3.2. Structure learning by GUHA method

As we have announced, the GUHA method
can be used for structure learning of our
neuro-fuzzy system. At the general level, the
GUHA method is used to identify a set of valid
(with the high significance) hypotheses us-
ing FIMPL quantifier. Antecedents are build
from categories of input variables. The spec-
ification of categories is up to user, but few
semi-automatic procedures are available in the
GUHA method implementing software such
as equifrequent and equidistant splits of vari-
ables ranges. Succedents are formed from cat-
egories of Y variable where single actions yk

correspond to different categories.
The number of hypotheses found and their

strengths can be interactively driven by user
by setting values of cp and base parameters.
Revealed valid hypotheses are then used for
structure learning as follows: Each hypothe-
sis corresponds to a single IF-THEN rule. An-
tecedents of GUHA hypotheses correspond to
antecedents of IF-THEN rules, i.e., to hidden
nodes hj . Parameters aji correspond to mid-
points of respective categories and parameters
bji to halves of theirs widths (lengths of inter-
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vals). Finally, values µkj are set to be one if the
succedent of the j-th hypothesis corresponds to
yk, otherwise it is set to zero. The other specific
details depend on concrete applications.

3.3. Parameter learning

Parameters of the presented neuro-fuzzy sys-
tem are of three types. Central points of an-
tecedents aj , scaling parameters bj and mem-
berships degrees of actions µkj . Elements of
central points aji are real numbers, the scaling
parameters bji are non-negative numbers and
µkj values are from the unit interval. In order
to have unified approach during genetic learn-
ing we transformed aji and bji values on unit
scale employing the sigmoid function.

The search for suitable readjusting of ini-
tally set parameters is performed by the follow-
ing genetic algorithm. The number of bits nb
for representing one parameter is chosen. Us-
ing this number of bits the values from unit
intervals are linearly transformed on interval
[0, 2nb − 1] and then its binary representation is
used to form one gene. Single gene consists of
binary representation of m(2n + l) parameters,
so the final length of single gene is nb·m(2n+l)
bits.

After coding the initially set parameters
from structure learning, the initial popula-
tion is created and the standard genetic learn-
ing is performed consisting of crossover and
mutation operations and selecting the best eval-
uated genes. The evaluation is done in the
following way: A gene corresponds to a cer-
tain neuro-fuzzy system. Based on a given set
of training inputs, it determines the set of out-
puts, in fact set of actions yk these are then
compared with desired outputs. If two sin-
gle outputs matches then de difference is set
to zero otherwise to 1. Differences are then
summed and the obtained value form the eval-
uation of gene. Clearly, in the ideal case
this evaluation is zero. So during the learn-
ing the genes with lower evaluation are the
better.

In the next section we demonstrate an em-

ployment of presented framework in a concrete
example of classification of EEG signals and
their spectrograms.

4. EEG signals and their spectro-
grams

The measurement of EEG (electroen-
cephalographic) signals is now well estab-
lished area. Our research is based on the mea-
surements performed at Joint Laboratory of
System Reliability of Czech Technical Uni-
versity, Prague, which is equipped by relevant
hardware and software tools; and cooper-
ates with the Institute of Computer Science AS
CR, in the project aimed at micro-sleeps detec-
tion [1, 2].

The EEG signals we have analyzed were ob-
tained from measurements on approximately
60 volunteers (probands) who were students
and professional drivers. The probands were
asked to attend the measurement after experi-
encing an as long as possible sleep deprivation
period in order to micro-sleeps events occur.
During measurement sessions probands had to
solve several psychological tests (Raven, addi-
tion of single and double-cipher integer num-
bers). They were driven to exhibit mentation
phase in their brain activity, relaxation phase
and also, in successful sessions, micro-sleeps
events were detected.

At the hardware level, the EEG signals mea-
surement was performed by using a special
hat consisting of 19 electrodes spread over the
proband’s head, see Fig. 2(a) The raw signals
were recorded using a special hardware card in-
stalled in PC and loaded into viewing and pro-
cessing software. An example of the raw time
record is presented in Fig. 2(b).

In the related software, preprocessing of raw
EEG signals is performed together with Gabor
analysis yielding spectrograms for 3 min mov-
ing windows. An example of spectrogram is
presented in Fig. 3. We can see that it consists
of signal intensity in 14 frequencies (1-14 Hz).

According to the medical terminology, indi-
vidual frequencies are grouped into the 4 bands,
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(a) (b)

Figure 2: (a) The distribution of electrodes over the
proband’s head; (b) An example of raw EEG records

Figure 3: An example of spectrogram

called delta, theta, alpha, beta; and the first
three bands are further split into the so called
slow and fast sub-bands. The separation of fre-
quencies is presented in Table 1.

delta - d theta - t alpha - a beta - b
1 - 3 Hz 4 - 7 Hz 8 - 13 Hz 14 - 30 Hz
d1 d2 t1 t2 a1 a2 b

1 - 2 3 4 - 5 6 - 7 8 - 10 11 - 13 no split

Table 1: Separation of frequencies into bands

The aim of the research presented in the pa-
per is to classify spectrograms into one of three
classes - mentation, relaxation and micro-sleep.
During the recent research [1, 2] it was veri-
fied that instead of using directly spectrograms
(signal intensities in individual bands) for clas-
sification it is advantageous to use their ra-
tios in order to eliminate individual biases of
probands. Especially, it was shown that a/d ra-
tios is tightly related to the classification of
EEG signals to the mentioned classes.

Ratios of bands’ intensities were also em-
ployed in our approach to classification. The
classificator was designed in the form of a ra-
dial neuro-fuzzy system. The process of
building (learning) of this neuro-fuzzy sys-

tem/classifier is described in the next two sec-
tions.

4.1. EEG spectrograms - structure learning

Structure learning of neuro-fuzzy classifier
was performed using the GUHA method as it
was presented in previous sections. The ana-
lyzed data consisted of 79 spectrograms (ob-
jects) with 24+1 variables computed/observed
on them. The first 24 variables corresponded to
24 ratios t/d, a/d, b/d, d/t, a/t, b/t, d/a, t/a, b/a,
d/b, t/b, a/b, t1/d1, a1/d1, d1/t1, a1/t1, d1/a1,
t1/a1, t2/d2, a2/d2, d2/t2, a2/t2, d2/a2, t2/a2;
and the last variable to the classification into
one of three class of mentation, relaxation and
micro-sleep.

For the ratio variables, the categories were
created on the basis of equifrequent splits of
variables’ ranges. For each variable three cat-
egories were created. Variable class had also
three categories corresponding to the individ-
ual classes.

During the GUHA analysis we have searched
for FIMPL based hypotheses with parameters
to be set as cp = 0.9 and base varying from
10 to 5. Antecedents were built from categories
derived from ratio variables. Succedents were
built from categories corresponding to the class
variable. Maximal length of antecedent was set
to be 3 and succedent to be 1.

In Table 2 there are summarized the hypothe-
ses we have found by the analysis:

1. a/d[1.3, 4.7] & a/t[1.5, 4.9] → 0.9, 10 relaxation
2. b/t[0, 0.1] & d1/a1[1.5, 4.9] & t1/a1[1.5, 4.9] → ment.
3. a/d[1.3,4.7] & b/d[1.5,4.9] → 0.9, 10 relaxation
4. a/d[1.3,4.7] & b/a[,4.9] & → 0.9, 10 micro-sleep

Table 2: The results of GUHA analysis

The categories in antecedents, actually the
intervals forming these categories were used for
initial setting of parameters of the neuro-fuzzy
classifier. Mid-points of intervals were used to
determine central points aji and halves of theirs
lengths to determine initial values of bji param-
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eters. These initially set parameters were then
readjusted by parameter learning.

4.2. EEG scpectrograms - parameter
learnig

To perform parameter learning we had to
chose a t-norm and activating function to get
the full specification of classifier. In our case we
have used the product t-norm and exponential
activating function, i.e., act(z) = exp(−z2).
Thus antecedents of rules/hidden nodes were
represented by multidimensional Gaussians.

A genetic learning algorithm was used for
parameter learning of the classifier. In every
step of the algorithm we have worked with a
population of 40 genes, each of them coded
parameters of the classifier. Coding was per-
formed in two steps. In the first step, real val-
ued parameters were transformed on unit inter-
val range employing the sigmoid function, and
then, in the second step, each parameter was
coded employing 10 bits.

After the coding, the standard learning pro-
cedure was employed. We separated popula-
tion of genes into two halves and performed
crossover between genes of two groups. Mu-
tation process with the probability of mutation
0.05 was incorporated into the learning pro-
cedure as well. After each epoch, 2/3 of best
genes were retained and 1/3 was replaced by
new genes. These genes were generated by mu-
tations from initial population of genes which
issued from structure learning. We performed
1000 epochs of learning. The results are pre-
sented in the next section.

5. Results and conclusions

After the parameter learning we have ob-
tained the final adjustment of parameters of
neuro-fuzzy classifier. The accuracy of classi-
fication for analyzed spectrograms is summa-
rized in Table 3.

The neuro-fuzzy classifier achieved accuracy
of 69% (54/78) which is not high at the first
glance. However, it was the best what we were

predicted class
real class mentation relaxation micro-sleep
mentation 15 3 8
relaxation 3 20 3

micro-sleep 5 2 19

Table 3: Result of classification

able to get with the presented model. For exam-
ple C4.5 algorithm achieved accuracy of 61%
what is the comparable result. The important
thing is that with respect to the correct classifi-
cation of micro-sleep events we have achieved
accuracy 73% (19/26) which is good perfor-
mance.

The main portion of misclassification was
caused by the fact that the spectrograms for
mentation and micro-sleep classes are very sim-
ilar.

The aim of the research presented was to
introduce a neuro-fuzzy system for classifica-
tion of EEG signals. The roots of the system
are in the theory of radial fuzzy systems and
radial basis neural networks. We have intro-
duced a hybrid approach to the learning of pre-
sented neuro-fuzzy system which is based on
the GUHA data-mining method and genetic
learning.

In the future research we will further develop
the presented classifier, especially on the basis
of experimental data obtained currently from
ongoing measurements.
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