
A Novel Fuzzy BP Learning Algorithm for Four-layer
Regular Fuzzy Neural Networks1

Liu Puyin2 Yang Wenqiang

(Department of Mathematics, National University of Defense Technology, Changsha 410073, China)

Abstract–The general fuzzy numbers are
approximately represented as polygonal fuzzy
numbers, which can be determined by finite
nested closed interval. Based on interval arith-
metic the input–output (I/O) relationship of
a four-layer feedforward regular fuzzy neural
network (FNN) is analyzed systematically. By
introducing semi-jump function ‘Lor’ a group
of partial derivative formulas are established
for the error function of the four-layer regu-
lar FNN, in which the maximum operator ‘∨’
and minimum operator ‘∧’ are included. A BP
learning algorithm for fuzzy weights of the reg-
ular FNN is developed. To speed the conver-
gence of the algorithm the learning constant
is updated in each iteration step. Our exper-
imental results show that the novel fuzzy BP
algorithm can train a regular FNN efficiently
to realize a family of fuzzy inference rules ap-
proximately, and to finish a uncomplete fuzzy
inference rule table to demonstrate the FNN
trained by our learning scheme having strong
generalization capability.

Keywards–Polygonal line operator; Fuzzy
arithmetic; Regular fuzzy neural network;
Fuzzy BP algorithm.

I. Introduction
The fuzzy neural networks (FNN’s), organic

combinations of fuzzy logic and neural networks have
attracted much attention in recent years (see, e.g.,
[1–3, 5–14, 17]). They combine the natural language
description of fuzzy logic and the learning properties
of artificial neural networks. Among those being used
most, regular FNN’s whose input, output signals and
connection weights are fuzzy numbers, internal op-
erations are based on Zadeh’s principle can process
fuzzy information directly. And they have found use-
ful in many applied areas, such as system identifica-
tion and system modeling[13,14], system control[2] and
image processing[12,16] and so on.

One important problem related to regular FNN’s
is to develop some learning algorithm of fuzzy
weights. Since the inputs, connection weights and the
thresholds related to regular FNN’s are fuzzy num-
bers, naturally it is much more difficult to develop

their learning algorithms than conventional neural
networks. This facts leads to lacking systematic
achievements in the field. The basic processes to
deal with the learning for regular FNN’s are simi-
lar ones with conventional neural networks, that is,
define a suitable error function, and develop some
iteration schemes for fuzzy weights and thresholds.
Since we do not have the calculus for fuzzy numbers,
the conventional learning algorithms for multi-layer
neural networks cannot be directly fuzzified. To ap-
ply BP type learning schemes in developing learning
algorithms of regular FNN’s the fuzzy weights and
thresholds must be restricted as some special fuzzy
sets. For instance, Buckley et al apply direct fuzzi-
fication to develop the fuzzy delta rule[3]. However,
it cannot be used, practically because of the lack of
theoretic support. By restricting fuzzy weights and
fuzzy thresholds to be real numbers, Ishibuchi et al
propose a fuzzy BP algorithm for real weights and
thresholds, based on finite level sets of the fuzzy sets
related[7]. Also Ishibuchi et al choose specifically tri-
angular and trapezoidal fuzzy numbers as the fuzzy
weights and thresholds of regular FNN’s[8,9]. They
utilize finite parameters related to those fuzzy num-
bers to develop learning algorithms, and the regu-
lar FNN’s can be trained to realize a family of fuzzy
inference rules approximately. In order to call off
constraint conditions for fuzzy weights, Dunyak et al
present a transformation which does not simplify the
representation of fuzzy weights[5].

A general fuzzy number cannot be determined
by a finite parameter collection. This is a main rea-
son that causes the difficulties for developing FNN
learning algorithms. So the results obtained so far in
the area hold only in some special cases. Further an
indispensable step to build these learning algorithms
is to differentiate ∨ − ∧ functions by using the unit
step function, i.e., for the given real constant a, define

∂(x ∨ a)
∂x

=

{
1, x ≥ a,

0, x < a;
∂(x ∧ a)

∂x
=

{
1, x ≤ a,

0, x > a.

Above representations are only valid for special case
x 6= a. And if x = a, they are no longer valid. Based
on these two derivative formulas, the chain rules for
differentiation of composition functions are only in
form, without rigorous mathematical sense.

1Project supported by grants from National Natural Science Foundation of China (No. 60375023; No. 69974041).
2Email address: liupuyin@public.cs.hn.cn.

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp217-223)

This paper develops a novel fuzzy BP algorithm
of regular FNN’s with general fuzzy numbers, based
on rigorous mathematical sense. To this end, we at
first expresses a general fuzzy number approximately
as a polygonal fuzzy number which can be determined
by finite α−level sets, by introducing the polygonal
line operator. Then we employ the interval arith-
metic to analyze the I/O relationship of the regular
FNN’s. For given fuzzy pattern pairs for training
the regular FNN, a suitable error function for testing
the closeness between the real outputs and the de-
sired ones is established. By the semi-jump function,
a group of derivative formulas of the error function
are developed. Thus, a novel fuzzy BP type learning
algorithm for the FNN is built. Finally some simu-
lation examples demonstrate the effectiveness of our
results.

II. Polygonal Line Operator

In the section let us first introduce some basic
notations and terminologies used in the paper. R
means the set of all real numbers, and N the collec-
tion of all natural numbers. By F0(R) we denote the
set of all fuzzy numbers with the following conditions:
for each

∼
A∈ F0(R), it follows that

(i) ∀α ∈ (0, 1], α−cut
∼
Aα⊂ R is a nonempty

bounded and closed interval;

(ii) supp(
∼
A)

4
={x ∈ R|∼A(x)>0} 6=∅ is bounded;

(iii) If supp(
∼
A) = [a1

0, a2
0], ker(

∼
A) = [e1

0, e2
0],

then
∼
A(·) is strictly increasing on [a1

0, e1
0], and strictly

decreasing on [e2
0, a2

0].

Write the support supp(
∼
A) as

∼
A0 . Thus,

∼
A0=

[a1
0, a2

0], ker(
∼
A) = [e1

0, e2
0], and by [4], we can eas-

ily prove that
∼
A (·) is right continuous and strictly

increasing on [a1
0, e1

0), left continuous and strictly de-
creasing on (e2

0, a2
0], and

∼
A(x) ≡ 1 for x ∈ [e1

0, e2
0].

By dH(A, B) for A, B ⊂ R (A 6= ∅, B 6= ∅) we
denote the Hausdorff metric between A, B. So

[a, b], [c, d] ⊂ R =⇒ dH([a, b], [c, d]) = |a− c| ∨ |b−d|.

If
∼
A,

∼
B∈ F0(R), define metric D(

∼
A,

∼
B) as follows[4]:

D(
∼
A,

∼
B) =

∨
α∈[0,1]

{
dH(

∼
Aα,

∼
Bα)

}
. It may easily be

proved by [4] that (F0(R), D) is a metric space. Also
the Euclidean metric dE

(
[a, b], [c, d]

)
is as follows:

dE

(
[a, b], [c, d]

)
=

{
(a− c)2 + (b− d)2

} 1
2 .

For given intervals [a, b], [c, d] ⊂ R, we can imply

dH

(
[a, b], [c, d]

) ≤ dE

(
[a, b], [c, d]

)

≤ √
2 · dH

(
[a, b], [c, d]

)
,

that is, the metrics dE and dH are equivalent.

Next let us prove that each fuzzy number in
F0(R) can be represented as a polygonal fuzzy num-
ber approximately. To this end, for any

∼
A∈ F0(R),

we choose γ ∈ N, and partition [0, 1] into γ equal
parts: 0 < 1/γ < · · · < (γ − 1)/γ < 1. Let

∼
Ai/γ=

[a1
i , a2

i] for each i ∈ {0, 1, ..., γ}. Link by line the
points (a1

0,
∼
A (a1

0)), ..., (a
1
γ ,

∼
A (a1

γ)), (a2
γ ,

∼
A (a2

γ)), ...,

and (a2
0,
∼
A(a2

0)), successively. And a polygonal line

denoted by
∼
tA(·) is established. We call

∼
tA a polygo-

nal fuzzy number with respect to
∼
A, whose member-

ship curve is shown in Fig. 1. We can show, ker(
∼
A) =

ker(
∼
tA) = [a1

γ , a2
γ], supp(

∼
A) = supp(

∼
tA) = [a1

0, a2
0].

Moreover
{

a1
0 ≤ a1

1 ≤ · · · ≤ a1
γ ≤ a2

γ ≤ a2
γ−1 ≤ · · · ≤ a2

0;

∀i ∈ {0, 1, ..., γ}, ∼Ai/γ= (
∼
tA)i/γ .

-

6
A(·)∼— tA(·)∼

1
γ

2
γ

...

γ
γ

a1
0 a1

1 a1
γ a2

γ a2
1 a2

00

y

x

Fig. 1. Illustration of polygonal fuzzy operator

Let γ ∈ N, define the operator Zγ : F0(R) −→
F0(R) as follows:

∀ ∼
A∈ F0(R), Zγ(

∼
A) =

∼
tA .

Zγ(·) is called γ−polygonal line operator.

Theorem 1. Let
∼
A,

∼
B∈ F0(R), γ ∈ N. And for

i = 0, 1, ..., γ, let
∼
Ai/γ= [a1

i , a2
i],

∼
Bi/γ= [b1

i , b2
i]. Then

the following conclusions hold:
(i) Zγ(

∼
A) ⊂ Zγ(

∼
B) ⇐⇒ [a1

i , a2
i] ⊂ [b1

i , b2
i] for

each i ∈ {0, 1, ..., γ};
(ii)

∼
A⊂

∼
B⇐⇒ ∀γ ∈ N, Zγ(

∼
A) ⊂ Zγ(

∼
B);

(iii) m ∈ N,=⇒ D(Zm(
∼
A), Zm(

∼
B)) ≤ D(

∼
A,

∼
B).

Moreover lim
m→+∞

D(
∼
A,Zm(

∼
A)) = 0.

By Theorem 1, each fuzzy number in F0(R) can
be represented as a polygonal fuzzy number approxi-
mately. Thus, we can utilize level sets of fuzzy num-
bers to build the learning algorithm of regular FNN’s.

III. Regular Fuzzy Neural Networks

We propose a four layer feedforward regular
FNN whose topological architecture is shown in Fig.
2. The neurons in the input layer, the second hidden
layer and output layer are linear. And each neuron
in the first hidden layer has the transfer function σ(·)

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp217-223)

and a fuzzy threshold. The input–output (I/O) rela-
tionship of the FNN demonstrated in Fig. 2 can be
represented as follows:

∼
Y =

q∑
k=1

∼
W k ·

(p∑
j=1

∼
V jk · σ

(〈∼
X,

∼
U(j)

〉
+

∼
Θj

))
. (1)

Specifically, if let
∼
V jk,

∼
Θj∈ F0(R) in (1) be vjk, θj ∈

R, respectively, and
∼
U(j) =

(∼
U1j , ...,

∼
Udj

)∈ F0(R)d

be a vector u(j) ∈ Rd, then we obtain a simpler form
of the I/O relationship:

∼
Y =

q∑
k=1

∼
W k ·

(p∑
j=1

vjk · σ
(〈

u(j),
∼
X

〉
+θj

))
. (2)

input layer hidden layer hidden layer output layer

∼
Xd

∼
X1 ∼

Y

∼
U ij

∼
V jk

∼
W k

k

k©©©©©*

-HHHHHj
@

@
@

@
@R

¡
¡

¡
¡
¡µ

©©©©©*

HHHHHj

--

-

k

k

k

k

©©©©©*
-

@
@

@
@
@R

¡
¡

¡
¡
¡µ
-

HHHHHj

HHHHHj

©©©©©*
k

k
k

©©©*
HHHj -

p

j1...

...

...
...

...

j2

d

1

1

q

1

Fig. 2. Four-layer regular feedforward FNN

Next let us account for the extension operations
and extended inner product

〈·, ·〉 in (1) (2) as follows.

For
∼
A,

∼
B∈ F0(R), α ∈ R, we define[15]

(
∼
A +

∼
B)(x) =

∨
x1+x2=x

{∼
A(x1)∧

∼
B(x2)

}
,

(
∼
A − ∼

B)(x) =
∨

x1−x2=x

{∼
A(x1)∧

∼
B(x2)

}
,

(
∼
A · ∼B)(x) =

∨
x1·x2=x

{∼
A(x1)∧

∼
B(x2)

}
,

(
α· ∼A

)
(x) =

∼
A

(x

α

)
, α 6= 0,

χ{0}, α = 0,

Define extended inner product:
〈∼
X,

∼
Y

〉
=

d∑
i=1

∼
Xi ·

∼
Y i

for
∼
X= (

∼
X1, ...,

∼
Xd),

∼
Y= (

∼
Y 1, ...,

∼
Y d). When

∼
X and

∼
Y degenerate as the vectors in Rd,

〈∼
X,

∼
Y

〉
is the

inner product in Rd. If f : R −→ R is a continuous
function f can be extended as f : F0(R) −→ F0(R)
as follows[15]:

∀ ∼
X∈ F(R), f(

∼
X)(y) =

∨

f(x)=y

{∼X(x)}.

By [11, 13], The regular FNN’s defined as (2) can
be universal approximators of a class of fuzzy func-
tion. So in the following let us analyze the I/O re-
lationship of (2) and develop a novel BP type learn-
ing algorithm. Choose γ ∈ N, let αk′ = k′/γ (k′ =
0, 1, ..., γ). For i = 1, ..., d; k = 1, ..., q, let

(∼
W k

)
αk′

=

[
w1

k(k′), w2
k(k′)

]
and

(∼
Xi

)
αk′

=
[
x1

i(k′), x2
i(k′)

]
. If

∼
X= (

∼
X1, ...,

∼
Xd) ∈ F0(R)d, we denote

X1
j(k′) =

d∑
i=1

(
uijx

1
i(k′) ∧ uijx

2
i(k′)

)
+θj ,

X2
j(k′) =

d∑
i=1

(
uijx

1
i(k′) ∨ uijx

2
i(k′)

)
+θj ,

Y 1
k(k′) =

p∑
j=1

(
vjkσ(X1

j(k′)) ∧ vjkσ(X2
j(k′))

)
,

Y 2
k(k′) =

p∑
j=1

(
vjkσ(X1

j(k′)) ∨ vjkσ(X2
j(k′))

)
,

(3)

Then by the interval arithmetic[4], αk′−cut of
∼
Y are

represented as follows:

∼
Y αk′

4
=

q∑
k=1

[
Z1

k(k′), Z2
k(k′)

]
=

q∑
k=1

[
w1

k(k′), w2
k(k′)

]·

·
(p∑

j=1

vjk · σ
(d∑

i=1

uij ·
[
x1

i(k′), x2
i(k′)

]
+θj

))

=
q∑

k=1

[
w1

k(k′), w2
k(k′)

]·[Y 1
k(k′), Y 2

k(k′)

]
,

(4)
thus, Z1

k(k′) and Z2
k(k′) can be respectively expressed

as

Z1
k(k′) = w1

k(k′)Y
1
k(k′) ∧ w2

k(k′)Y
1
k(k′)∧

∧w1
k(k′)Y

2
k(k′) ∧ w2

k(k′)Y
2
k(k′),

Z2
k(k′) = w1

k(k′)Y
1
k(k′) ∨ w2

k(k′)Y
1
k(k′)∨

∨w1
k(k′)Y

2
k(k′) ∨ w2

k(k′)Y
2
k(k′).

IV. Learning Algorithm

Two key steps to design learning algorithm for
the fuzzy weights and thresholds of regular FNN’s
as (2) are to derive the error function of fuzzy out-
puts from output neuron and the corresponding de-
sired values (fuzzy targets)[7−10,14], and to define the
derivatives of the error function in which fuzzy op-
erators ‘∨’ or ‘∧’ are included. To this end, let us
introduce a function which is called semi-jump func-
tion to calculate the derivative operations of ∨ − ∧
functions[17]. Let

lor(·) : R −→ R, lor(x) =

1, x > 0,

1
2
, x = 0,

0, x < 0.

Using the semi-jump function ‘lor(·)’ we can establish
the derivative operation laws of ∨ − ∧ functions.

Proposition 1[17]. Let the real functions f, g be dif-
ferentiable on R, h1 = f ∨g, h2 = f ∧g. Then h1, h2

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp217-223)

are almost everywhere differentiable on R, moreover

dh1(x)
dx

=
d(f(x) ∨ g(x))

dx

= lor(f(x)− g(x))
df(x)

dx
+ lor(g(x)− f(x))

dg(x)
dx

;

dh2(x)
dx

=
d(f(x) ∧ g(x))

dx

= lor(f(x)− g(x))
dg(x)
dx

+ lor(g(x)− f(x))
df(x)

dx
.

Specifically, if a ∈ R, the following facts hold:

d(a ∨ f(x))
dx

= lor(f(x)− a)
df(x)

dx
,

d(a ∧ f(x))
dx

= lor(a− f(x))
df(x)

dx
.

A. Derivatives of Error Function

For
{(

(
∼
X1 (l), ...,

∼
Xd (l));

∼
O (l)

)
, l = 1, ..., L

}
,

a given family of fuzzy pattern pairs, we can train
the regular FNN in Fig. 2, where

(∼
X1(l), ...,

∼
Xd(l)

)

is the input, and
∼
O (l) is the corresponding out-

put. Let
∼
O(l)αk′ =

[
o1

k′(l), o2
k′(l)

]
, and

(∼
Xi(l)

)
αk′

=[
x1

i(k′)(l), x2
i(k′)(l)

]
. To measure the difference be-

tween the desired and real outputs, we define the
following error function:

E =
1
2

L∑
l=1

[γ∑
k′=0

dE

(∼
Y (l)αk′ ,

(∼
O(l)

)
αk′

)2]
. (5)

where
∼
Y (l)αk′ =

q∑
k=1

[
Z1

k(k′)(l), Z2
k(k′)(l)

]
, Z1

k(k′)(l)

and Z2
k(k′)(l) are defined respectively by letting

x1
i(k′) = x1

i(k′)(l) and x2
i(k′) = x2

i(k′)(l) in (3) (4). We
write all adjustable parameters related to the FNN
in (2) as a vector w = (w1, ..., wN)T, that is

w =
(
u11, ..., udp, v11, ..., vpq, θ1, ..., θp,

w1
1(0), ..., w

1
q(γ), w

2
q(γ), ..., w

2
1(0)

)T
.

We can build the partial derivative formulas related
to the error function E.

Theorem 2. Let the transfer function σ : R −→ R
be continuously differentiable and non-negatively in-
creasing. Then the error function defined by (5) is
differentiable a.e. with respect to w in RN . Fur-
ther, for r = 1, 2; k = 1, ..., q; k′ = 0, 1, ..., γ; j =
1, ..., p; i = 1, ..., d, if let

∆1
k′(l) =

q∑
k=1

Z1
k(k′)(l)− o1

k′(l),

∆2
k′(l) =

q∑
k=1

Z2
k(k′)(l)− o2

k′(l);

and

D1
k(k′)(l) = w1

k(k′)Y
1
k(k′)(l) ∧ w1

k(k′)Y
2
k(k′)(l)

−w2
k(k′)Y

1
k(k′)(l) ∧ w2

k(k′)Y
2
k(k′)(l);

D2
k(k′)(l) = w1

k(k′)Y
1
k(k′)(l) ∨ w1

k(k′)Y
2
k(k′)(l)

−w2
k(k′)Y

1
k(k′)(l) ∨ w2

k(k′)Y
2
k(k′)(l);

Ar
k(k′)(l) = lor

(
(−1)rD1

k(k′)(l)
)(

Y 1
k(k′)(l)lor

(
wr

k(k′)

)

+Y 2
k(k′)(l)lor

(−wr
k(k′)(l)

))
;

Br
k(k′)(l)=lor

(
(−1)r+1D2

k(k′)(l)
)(

Y 1
k(k′)(l)lor

(−wr
k(k′)

)

+Y 2
k(k′)(l)lor

(
wr

k(k′)(l)
))

;

Ur
k(k′)(l) = lor

(
(−1)rw2

k(k′)

)
lor

(
D1

k(k′)(l)
)

+lor
(
(−1)rw1

k(k′)

)
lor

(−D1
k(k′)(l)

)
;

V r
k(k′)(l) = lor

(
(−1)r+1w1

k(k′)

)
lor

(
D2

k(k′)(l)
)

+lor
(
(−1)r+1w2

k(k′)

)
lor

(−D2
k(k′)(l)

)
;

Cr
ijk(k′)(l) = vjk

{
lor

(
(−1)rvjk

)
σ′

(
X2

j(k′)(l)
)·

·
(2∑

t=1
x3−t

i(k′)(l)lor((−1)t+1uij)
)

+lor
(
(−1)r+1vjk

)
σ′

(
X1

j(k′)(l)
)·

·
(2∑

t=1
x3−t

i(k′)(l)lor((−1)tuij)
)}

;

H1
k(k′)(l) = ∆1

k′(l)U
1
k(k′)(l) + ∆2

k′(l)V
1
k(k′)(l);

H2
k(k′)(l) = ∆1

k′(l)U
2
k(k′)(l) + ∆2

k′(l)V
2
k(k′)(l),

we obtain the following partial derivative formulas:

(i)
∂E

∂θjk
=

L∑
l=1

γ∑
k′=0

q∑
k=1

{
H1

k(k′)(l)·

·(
2∑

t=1
σ′(X3−t

j(k′)(l))lor((−1)t+1vjk)
)

+H2
k(k′)(l)

(2∑
t=1

σ′(X3−t
j(k′)(l))lor((−1)tvjk)

)}
.

(ii)
∂E

∂uij
=

L∑
l=1

γ∑
k′=0

q∑
k=1

{
∆1

k′(l)·

·
(
U1

k(k′)(l)C
2
ijk(k′)(l) + U2

k(k′)(l)C
1
ijk(k′)(l)

)

+∆2
k′(l)

(
V 1

k(k′)(l)C
2
ijk(k′)(l) + V 2

k(k′)(l)C
1
ijk(k′)(l)

)}
;

(iii)
∂E

∂vjk
=

L∑
l=1

γ∑
k′=0

{
H1

k(k′)(l)·

·(
2∑

t=1
σ(X3−t

j(k′)(l))lor((−1)tvjk)
)

+H2
k(k′)(l)

(2∑
t=1

σ(X3−t
j(k′)(l))lor((−1)t+1vjk)

)}
;

(iv)
∂E

∂wr
k(k′)

=
L∑

l=1

{
Ar

k(k′)(l)∆
1
k′(l) + Br

k(k′)(l)∆
2
k′(l)

}

for r = 1, 2.

Proof The proof of (iv) is easy. Considering the

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp217-223)

following facts we can prove (i)–(iii), respectively:

∂Zr
k(k′)(l)

∂uij
=

∂Zr
k(k′)(l)

∂Y 1
k(k′)

∂Y 1
k(k′)(l)

∂uij
+

∂Zr
k(k′)(l)

∂Y 2
k(k′)

∂Y 2
k(k′)(l)

∂uij
;

∂Zr
k(k′)(l)

∂vjk
=

∂Zr
k(k′)(l)

∂Y 1
k(k′)

∂Y 1
k(k′)(l)

∂vjk
+

∂Zr
k(k′)(l)

∂Y 2
k(k′)

∂Y 2
k(k′)(l)

∂vjk
;

∂Zr
k(k′)(l)

∂θj
=

∂Zr
k(k′)(l)

∂Y 1
k(k′)

∂Y 1
k(k′)(l)

∂θj
+

∂Zr
k(k′)(l)

∂Y 2
k(k′)

∂Y 2
k(k′)(l)

∂θj
.

where r = 1, 2. Easily we can show that E is differ-
entiable a.e. with respect to w in RN . Thus theorem
is proved. 2

B. Learning Algorithm

By the partial derivatives determined by Theo-
rem 2, we can develop a novel fuzzy BP algorithm.
Let the learning constant η change as the time step
iterates, i.e. suppose η = η[t] = ρ(E[t]), η is de-
fined by the error function E[t] in each iteration:
ρ(E[t]) = ρ0E[t]

/∥∥∇E(w)
∥∥2

, where

∇E(w) =
(
∂E

/
∂w1, ..., ∂E

/
∂wN

)

is a gradient vector, ρ0 is a given constant. we obtain
the following iteration scheme:

uij [t+1]=uij [t]−ρ0 · E[t] · ∂E[t]

∂uij [t]

/
‖∇E(w)‖2;

vjk[t+1]=vjk[t]−ρ0 · E[t] · ∂E[t]

∂vjk[t]

/
‖∇E(w)‖2;

θj [t+1]=θj [t]−ρ0 · E[t] · ∂E[t]

∂θj [t]

/
‖∇E(w)‖2;

wr
k(k′)[t+1]=wr

k(k′)[t]−
ρ0E[t]∂E[t]

∂wr
k(k′)[t]

/
‖∇E(w)‖2,

(6)

where r = 1, 2. Let ρ0 ba a small positive number,
e.g., ρ0 = 0.01.

Algorithm 1 Novel type fuzzy BP algorithm.
Step 1. Randomly choose initial values: uij [0],

vjk[0], θj [0] and wr
k(k′)[0] (r = 1, 2), and let t = 0;

Step 2. Calculate following partial deriva-
tives: ∂E[t]

/
∂uij [t], ∂E[t]

/
∂vjk[t], ∂E[t]

/
∂θj [t], and

∂E[t]
/
∂wr

k(k′)[t];
Step 3. According to iteration scheme (6) update

the parameters uij , vjk, θj and wr
k(k′);

Step 4. For any k ∈ {1, ..., q}, we re-array the set
{wr

k(k′)|r = 1, 2; k′ = 0, 1, .., γ} increasingly, i.e.

w1
k(0) ≤ w1

k(1) ≤ · · · ≤ w1
k(γ) ≤ w2

k(γ) ≤ · · · ≤ w2
k(0).

Step 5. Discriminate whether
∣∣E[t]

∣∣< ε? If yes
go to Step 6, otherwise let t = t + 1 go to Step 2;

Step 6. Output all parameters.

V. Simulations

In the section, the proposed fuzzy BP algorithm
is demonstrated by computer simulations on a few
of numerical examples. In the following simulations,

the upper-bound of iteration steps M is assumed to
be 2 × 104, and the error bound ε = 0.1. In the
hidden layers of the regular FNN as in Fig. 2 let
p = q = 5. Choose L = 4. The activation func-
tion is chosen as σ : R −→ R+, defined as follows:
∀x ∈ R, σ(x) = 1/(1 + e−x), i.e. σ is the Sigmoidal
function. Obviously it is a increasing, non-negative
and differentiable function.

A. Learning capability

To examine the learning capability of a regular
FNN, let us now study a simulation example related
to digital image enhancement. Suppose [0, G] to be
a grey degree interval, in which includes all grey lev-
els of the digital images related, and here we choose
G = 255. By some fuzzy sets, such as, ‘Bright (

∼
BR)’,

‘Brighter (
∼
Br)’, ‘Medium (

∼
Me)’, ‘Darker (

∼
Dr)’ and

‘Dark (
∼
DR)’ we can describe the gray levels of the

images[12]. To develop some efficient image filters
based on fuzzy inference, the first step is to design
a family of suitable fuzzy rules. For example, the fol-
lowing ‘IF–THEN’ rules are usual cases in designing
fuzzy filters[12,16] :

IF x1 is
∼
BR AND x2 is

∼
BR THEN y is

∼
BR;

IF x1 is
∼
BR AND x2 is

∼
DR THEN y is

∼
Me;

IF x1 is
∼
DR AND x2 is

∼
BR THEN y is

∼
Me;

IF x1 is
∼
DR AND x2 is

∼
DR THEN y is

∼
DR.

(7)

The antecedent and consequent fuzzy sets ‘
∼
DR’, ‘

∼
Me’

and ‘
∼
BR’ are fuzzy numbers defined on [0, G].
Let us now employ the regular FNN’s defined

as in Fig. 2 to realize the fuzzy IF–THEN inference
rules defined in (7), approximately. Also we present
the numerical comparison of our model with other
fuzzified neural networks developed in [7, 9]. To this
end we assume that the input related is a two dimen-
sional variable (x1, x2), and the output is an one di-
mensional variable y. The membership curves of fuzzy
numbers

∼
BR,

∼
Me,

∼
DR are shown in (a) of Fig. 3, re-

spectively at the bottom of this page. Choose

{(
(
∼
BR,

∼
BR),

∼
BR

)
,

(
(
∼
BR,

∼
DR),

∼
Me

)
,

(
(
∼
DR,

∼
BR),

∼
Me

)
,

(
(
∼
DR,

∼
DR),

∼
DR

)}
,

(8)

as the training patterns for designing learning algo-
rithms of the regular FNN’s as (2) and those in [7],
[9].

The regular FNN defined as (2) can be trained
by using Algorithm 1, and corresponding to the input
patterns in the training set (8), we can get the actual
outputs after 20000 iteration steps, as shown (b) of
Fig. 3 at the bottom of this page. Ishibuchi et al use
the symmetric triangular fuzzy number weights and
thresholds in [9] to build up a regular FNN, whose ad-
justable parameters are only two kinds of parameters

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp217-223)

— two endpoints of the α−cuts. The BP type learn-
ing algorithms are used to train this FNN model, also
it can realize the inference rules in (7) approximately
through the training pattern set (8). The correspond-
ing actual and desired outputs are shown in (c) of
Fig. 3 at the bottom of this page, after 20000 itera-
tion steps. In [7] Ishibuchi et al take the real numbers
as the connection weights and thresholds to build a
FNN model. Similarly with the convenient BP algo-
rithm they develop a learning algorithm of the FNN.
By iterating 20000 steps, we can get the actual out-
puts to approximate the rules in (7), as shown in (d)
of Fig. 3 at the bottom of this page. By comparing
(b) (c) (d) of Fig. 3, we can easily find that the reg-
ular FNN as (2) gives the best results, i.e. the error
of the regular FNN is significantly lower than those
Ishibuchi’s FNN models[7, 9].

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1

1.5

2

2.5

3

Iteration step t

V
al

ue
 o

f E
×

10
−4

Our Algorithm 1
Ishibuchi method [7]
Ishibuchi method [9]

Fig. 4. Error curves of different FNN models

By Fig. 4 we show the curves of the error func-
tion defined by (5), corresponding to above three
FNN models, i.e. the regular FNN defined as (2) and

two Ishibuchi’s models[7, 9]. Through Fig. 4 we can
find that despite larger error at the beginning of iter-
ation, the square error of our regular FNN is lowest,
and corresponding to Ishibuchi’s two FNN models,
the square errors are both larger. So our result is
also the best.

B. Generalization capability

Let us proceed to study fuzzy rules to show the
generalization capability of the regular FNN’s as in
Fig. 2. The fuzzy rules in (7) are shown as Fig.
5, a fuzzy rule table, in which only four rules out
of 25 fuzzy IF—THEN rules are presented and oth-
ers are missing. Now let us complete the rule table
by assigning one of the five fuzzy sets as ‘

∼
BR’ ‘

∼
Br’

‘
∼
Me’ ‘

∼
Dr’ and ‘

∼
DR’ to the consequent of each miss-

ing rule. For example, when we choose the input
(x1, x2) to be

(∼
DR,

∼
Dr

)
,

(∼
DR,

∼
Me

)
,

(∼
Dr,

∼
Br

)
,

and
(∼
Me,

∼
BR

)
,

(∼
BR,

∼
Br

)
, respectively, the cor-

responding outputs of the regular FNN as (2) are
respectively shown in Fig. 7, from which we can ob-
tain their respective linguistic values: ‘

∼
DR’ ‘

∼
Dr’ ‘

∼
Me’

‘
∼
Br’ and ‘

∼
BR’. Similarly we can complete the other

missing rules, as shown in Fig. 6. Obviously, these
consequents conform to inference sense in (7). So
the regular FNN’s as (2) possesses strong generaliza-
tion capability, which is advantageous over that of
Ishibuchi’s model in [9], since the similar rule table is
completed based on nine fuzzy rules.

0 100 200
0

0.5

1

0 100 200
0

0.5

1

0 100 200
0

0.5

1

0 100 200
0

0.5

1

(a) (b)

(c) (d)

Fig. 3. Membership curves of fuzzy numbers ‘Dark’ ‘Medium’ ‘Bright’ : (a) desired curves; (b) desired curves

(—) and actual output curves by our model (· · ·); (c) desired curves (—) and actual output curves by Ishibuchi model

in [9] (· · ·); (d) desired curves (—) and actual output curves by Ishibuchi model in [7] (· · ·).

x2\x1
∼
DR

∼
Dr

∼
Me

∼
Br

∼
BR

∼
DR

∼
DR

∼
Me

∼
Dr
∼
Me
∼
Br
∼
BR

∼
Me

∼
BR

Fig. 5. Uncomplete fuzzy rule table

x2\x1
∼
DR

∼
Dr

∼
Me

∼
Br

∼
BR

∼
DR

∼
DR

∼
Dr

∼
Dr

∼
Dr

∼
Me

∼
Dr

∼
Dr

∼
Dr

∼
Dr

∼
Me

∼
Br

∼
Me

∼
Dr

∼
Dr

∼
Me

∼
Br

∼
Br

∼
Br

∼
Dr

∼
Me

∼
Br

∼
Br

∼
Br

∼
BR

∼
Me

∼
Br

∼
Br

∼
Br

∼
BR

Fig. 6. Fuzzy rule table completed by FNN (2)

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp217-223)

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1
Dark Darker Medium Brighter Bright

Fig. 7 Actual outputs of FNN (2)

V. Conclusions

By the polygonal line operator we can express a
general fuzzy number approximately as a polygonal
fuzzy number. Thus, with regard to the endpoints
of finite level sets of fuzzy number weights in a reg-
ular FNN we can develop BP learning algorithm for
the FNN. In the paper the partial derivative formu-
las of the error function are built based on rigorous
mathematical sense through introducing semi-jump
function. To accelerate convergence of learning al-
gorithm we take the learning constant as a function
of the iteration step t. Some simulations demonstrate
the regular FNN’s based on the novel fuzzy BP algo-
rithm can realize a given fuzzy rule family approx-
imately, and have strong generalization capability.
Also, through the polygonal line operator we can em-
ploy genetic algorithm to build learning schemes for
regular FNN’s[1], which is a meaningful subject in fu-
ture research.

References
[1] R. A. Aliev and B. Fazlollahi, et al, Genetic

algorithm-based learning of fuzzy neural net-

works. Part I: feed-forward fuzzy neural networks,

Fuzzy Sets and Systems, 118(2001) 351–358.

[2] J. J. Buckley and Y. Hayashi, Can neural nets

be universal approximators for fuzzy functions?

Fuzzy Sets and Systems, 101(1999) 323–330.

[3] J. J. Buckley and Y. Hayashi, Direct fuzzification

of neural networks, in Proc. of 1st Asian Fuzzy

Sys. Symp., vol. 1 (1993) 560–567.

[4] P. Diamond and P. Kloeden, Metric spaces of

fuzzy sets, Singapore: World Scientific Publish-

ing, 1994.

[5] J. Dunyak and D. Wunsch, “Fuzzy number neu-

ral networks,” Fuzzy Sets and Systems, 108(1999)

49–58.
[6] T. Feuring and W. M. Lippe, The fuzzy neural

network approximation lemma, Fuzzy Sets and

Systems, 102(1999) 227–236.

[7] H. Ishibuchi, R. Fujioka, and H. Tanaka, Neu-

ral networks that learn from fuzzy if–then rules,

IEEE Trans. on Fuzzy Systems, 1(1993) 85–97.

[8] H. Ishibuchi, K. Kwon and H. A. Tanaka, Learn-

ing algorithm of fuzzy neural networks with tri-

angular fuzzy weights, Fuzzy sets and Systems,

71(1995) 277–293.

[9] H. Ishibuchi and M. Nii, Numerical analysis of the

learning of fuzzified neural networks from fuzzy

if–then rules, Fuzzy Sets and Systems, 120(2001)

281–307.
[10] Zhenquan Li, V. Kecman and A. Ichikawa, Fuzzi-

fied neural network based on fuzzy number oper-

ations, Fuzzy Sets and Systems, 130(2002) 291–

304.
[11] Puyin Liu, Analyses of regular fuzzy neural net-

works for approximation capability, Fuzzy Sets

and Systems, 114(2000) 329–338.

[12] Puyin Liu and Hongxing Li, Image restoration

techniques based on fuzzy neural networks, Sci-

ence in China, Series F, 45(2002)(4) 273–285.

[13] Puyin Liu and Hongxing Li, Fuzzy Neural Net-

work Theory and Application, Singapore: World

Scientific Publishing, 2004.

[14] Puyin Liu and Hongxing Li, Efficient learning al-

gorithms for three-layer regular feedforward neu-

ral networks, IEEE Trans. on Neural Networks,

2004, 15(3).

[15] H. T. Nguyen, A note on the extension principle

for fuzzy set, J. Math. Anal. Appl., 64(1978)

369–380.
[16] F. Russo, Hybrid neuro-fuzzy filter for impulse

noise removal, Pattern Recognition, 32(1999)

1843–1855.
[17] X. H. Zhang, C. C. Huang and S. H. Tan, et al,

The min-max function differentiation and training

of fuzzy neural networks, IEEE Trans. on Neural

Networks, 7(1996) 1139–1150.

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp217-223)

