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ABSTRACT
In this research, a robust optimization approach applied to
support vector regression (SVR) is investigated. A novel ker-
nel based-method is developed to address the problem of data
uncertainty where each data point is inside a sphere. The
model is called robust SVR. Computational results show that
the resulting robust SVR model is better than traditional SVR
in terms of robustness and generalization error.
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1 Introduction

Currently, incorporating uncertainty into a mathematical
model formulation is an issue of active research in the ma-
chine learning community. Lanckriet et al.[10] developed a
robust minimax probability machine (MPM) to predict the
class of new observations in binary class problems. In their
work, the mean and covariance matrix of the data in each
class are assumed to belong in some specified set. In [7]
the model that incorporates the uncertainty of the data is ex-
plored in a different way. The uncertainty of the data is char-
acterized by interval uncertainties of the data within given
hyper-rectangles. Following the idea of the minimax proba-
bility machine for classification due to Lanckriet et al.[10], in
[13] robust minimax probability machine regression is formu-
lated. In their paper regression is formulated as maximizing
the minimum probability Ω that the true regression function
is within ±ε of the regression model. Trafalis and Alwazzi
[14] proposed a robust support vector machine (SVM) clas-
sifier that studies noisy data with bounded errors on the lin-
ear model of SVM. Their work investigated how the stability
of the solution is affected by the noise of the data. In this
research, a robust SVM approach is proposed which can im-
prove the generalization error. The motivation is to increase
the margin of separation by introducing noise. Different from
the previous work, this research emphasizes how the general-
ization error improves with the data perturbation. In Trafalis
and Alwazzi’s [14] approach, the margin of separation de-
creases with the increase of the noise level and it approaches
zero as the radius of the uncertainty sphere becomes equal
to the margin. In our case, the margin is increasing as the

level of uncertainty is increasing. Street and Mangasarian
[12] proved that the generalization error is improved when
the training set is learned with less accuracy. They developed
a linear model and train with several degrees of tolerances τ
to investigate the influence of the noise to the test general-
ization. Our paper is organized as follows. In section 2, a
literature review on robust optimization, robust classification
methods and SVR is provided. Section 3 provides a math-
ematical formulation of the proposed model. In Section 4
computational results are provided and section 5 concludes
the paper.

2 Literature Review

2.1 The Kernel Method

Several machine learning algorithms such as the perceptron
are developed with the assumption of linearity. Then, the
resulting algorithms are limited to linear discriminant func-
tions. Hence, if for example a certain classification problem
displays a nonlinear separating surface, algorithms such as
the perceptron will not be able to account for this nonlinear
behavior. In general, complex real-world problems require
more expressive hypothesis spaces than linear functions. Ker-
nel methods [11] offer an alternative solution by mapping a
data point x in the input space into a higher dimensional fea-
ture space F through a feature map ϕ such that ϕ : x �→ ϕ(x).
Therefore the point x in the input space becomes ϕ(x) in the
feature space.

Unfortunately, very often the function ϕ (x) is not avail-
able, can not be computed, or does not even exist. However,
the dot product of two vectors can be computed, both in the
input and feature space. In other words, while ϕ (x) might not
be available, the dot product < ϕ (x1), ϕ (x2) > can still be
computed in the feature space. In order to employ the kernel
method, it is necessary to express the separation constraints in
terms of inner products of the data vectors x i. Consequently,
the constraints describing the classification problem have to
be reformulated, such that solely dot products are used. In the
new space the dot product < . > becomes < ϕ(x), ϕ(x) ′ >.
A nonlinear kernel function, k(x, x ′), can be used to substi-
tute the dot product < ϕ(x), ϕ(x)′ >. Then in the higher
dimensional feature space, we can construct a linear deci-
sion function that represents a nonlinear function in the input
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space. The following nonlinear kernel functions are usually
used in the SVM literature [9]:

1. polynomial: (xT xi + 1)p,

2. radial basis function (RBF): exp(− 1
2σ2 ‖x − xi‖2),

The best kernel function which one can use to substitute for
the dot products in the feature space depends on the data; usu-
ally one has to use cross-validation methods [8] to select the
best kernel function.

2.2 Support Vector Machines

A well known method in machine learning to find an opti-
mal classifier (hyperplane) between two sets of points is the
so called SVM [15]. This method has attracted people in
the machine learning and optimization community because of
its impressive performance in generalization error of unseen
data. In this method one seeks the best hyperplane among
many possible hyperplanes to separate two sets of patterns.
The optimal hyperplane is the one that is located mid-way
between the two classes. This hyperplane is orthogonal to the
shortest line connecting the convex hulls of the two classes.
Seeking the best hyperplane is equivalent to maximizing the
margin between the two classes. If wx1 + b = +1 is on
the supporting hyperplane of class +1 (wx1 + b = +1) and
wx2 + b = −1 is on the supporting hyperplane of class −1
(wx2 + b = −1), the margin between the two classes can be
computed by computing the distance between the supporting
hyperplanes of those classes. Specifically, the margin is com-
puted as follows (wx1 + b = +1) − (wx2 + b = −1) ⇒
w(x1 − x2)) = 2 ⇒

(
w

‖w‖ (x1 − x2)
)

= 2
‖w‖ . The mathe-

matical formulation of the SVM optimization problem for the
linear separable case is given as

min
1
2
‖w‖2 (1)

Subject to

yi(wxi + b) ≥ 1, i = 1, .., �.

In the case of linear non-separable problems, the formulation
of the SVM optimization problem is given as

min
1
2
‖w‖2 + C

�∑
i=1

ti (2)

Subject to

yi(wxi + b) + ti ≥ 1
ti ≥ 0, i = 1, .., �.

By this formulation one wants to maximize the margin of sep-
aration of two classes by minimizing ‖w‖2 [9]. One needs
to minimize the misclassification errors that are described by
the slack variables ti while maximizing the margin. The slack
variable ti is used to handle the case of infeasibility of hard
constraints yi(wxi + b) ≥ 1 by penalizing points that do not
satisfy the hard constraints. To minimize such deviations, we

penalize those through a regularization constant C. The vec-
tor w is the normal to the separating hyperplane: wx+ b = 0.
The constant b determines its location relative to the origin.
To address the problem of nonlinearity that frequently occurs
in real world problems, one can utilize kernel methods. The
dual formulation of problem (2) is expressed in the feature
space:

min
1
2

�∑
i,j=1

yiyjαiαjk(xi, xj) −
�∑

i=1

αi (3)

Subject to

0 ≤ αi ≤ C, i = 1, ..�
�∑

i=1

αiyi = 0,

where k is the kernel function described in section 2.1. The
formulation in (3) is a linearly constrained quadratic pro-
gramming. Training SVM is equivalent to solving the above
convex optimization problem. Therefore the solution of
SVM is unique (under the assumption that k is positive def-
inite) and globally optimal, unlike other networks’ training
[9] which is equivalent to a nonconvex optimization prob-
lem with the danger of obtaining local optima solutions. Let

f(x) =
�∑

i=1

yiα
∗
i k(xi, x)+b∗. The resulting optimal classifier

is g(x) = sign(
�∑

i=1

yiα
∗
i k(x, xi)) + b∗, where α∗

i , i = 1, .., �

are the optimal solutions of problem (3) and b∗ is chosen so
that yif(xi) = 1 for any i with C > α∗

i > 0 [6]. The points
xi for which α∗

i > 0 are called support vectors and repre-
sent the training data points that are needed to represent the
optimal decision function.

2.3 Support Vector Regression

By the introduction of Vapnik’s ε-insensitive loss function,
SVM has been generalized for function approximation or re-
gression [11]. Established on the unique theory of Structural
Risk Minimization principle to estimate a function by min-
imizing an upper bound of the generalization error, SVM is
shown to be very resistant to the over-fitting problem, even-
tually achieving high generalization performance. Suppose
we have been given � training data, (xi, yi), i = 1, .., � with
input data x = {x1, x2.., x�} ⊆ �Nand corresponding out-
puts y = {y1, .., y�} ⊆ �. By support vector regression, one
wants to find a function f(x) that has at most ε deviation from
the actual target yi for all training data. Suppose we have the
following function as a regressor:

f(x) = wT ϕ(x) + b, (4)

where ϕ(x) denotes a point in the high dimensional feature
space F which is the mapping of a point x in the input space.
The coefficients w and b are estimated by minimizing the reg-

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp70-75)



ular risk function defined in equation (5).

min
1
2
‖w‖2 + C

1
�

�∑
i=1

Lε(yi, f(xi)) (5)

Subject to

yi − wϕ(xi) − b ≤ ε

wϕ(xi) − yi + b ≤ ε, i = 1, .., �,

where

Lε(yi, f(xi)) =
{ |yi − f(xi)| − ε|yi − f(xi)| ≥ ε

0, otherwise
(6)

The term ‖w‖2 is called the regularization term. Minimizing
‖w‖2 will make a function as flat as possible, thus playing
the role of controlling the function capacity. The second term
is the empirical error measured by the ε-insensitive loss func-
tion. Using the idea of ε-insensitive loss function [15], one
should seek to minimize the norm of w in order to accomplish
good generalization properties for the regressor f . Therefore,
we have to solve the following optimization problem in the
primal weight space:

min
1
2
‖w‖2 (7)

Subject to

yi − wϕ(xi) − b ≤ ε

wϕ(xi) − yi + b ≤ ε, i = 1, .., �

We assume that there is a function f that approximates all
pairs (xi, yi) with precision ε. In this case, we assume that the
problem is feasible. In the case of infeasibility, where some
points might deviate from f ± ε, one can introduce slack vari-
ables t, t∗ to cope with infeasible constraints of the optimiza-
tion problem. Then, the above problem can be formalized as
[15]:

min
1
2
‖w‖2 + C

�∑
i=1

(ti + t∗i ) (8)

Subject to

yi − wT ϕ(xi) − b − ti ≤ ε, i = 1, .., �

wϕ(xi) − yi + b − t∗i ≤ ε, i = 1, .., �

ti, t
∗
i ≥ 0,

The constant C > 0 determines the trade off between the flat-
ness of function f and the amount up to which deviations
larger than ε are tolerated. Any deviation more than ε will
be penalized with C. Figure 1 depicts the situation graphi-
cally. Only the points outside the shaded region contribute
to the cost insofar, as the deviations are penalized in a lin-
ear fashion. In Support vector Regression (SVR), ε is equiva-
lent to the approximation accuracy placed on the training data
points. A small ε corresponds to a large slack variable t

(∗)
i and

high approximation accuracy. On the contrary, a large ε cor-
responds to a small slack variable t

(∗)
i and low approximation

accuracy. According to equation (8), a large slack variable

will make the empirical error having a large impact relatively
to the regularized term. In SVR, support vectors are the train-
ing data points lying on or outside the ε-bound of the decision
function. Therefore, the number of support vectors decreases
as ε increases. Finally, by introducing Lagrange multipliers
and exploiting the optimality constraints, the decision func-
tion is explicitly given as:

f(x) =
�∑

i=1

(αi − α∗
i )K(xi, x) + b, (9)

where K(xi, x) is defined through the kernel function k.

t
t

Figure 1. ε-insensitive loss function.

The points outside the shaded region are penalized

2.4 Robust Optimization

The robust optimization methodology is a relatively new ap-
proach to deal with uncertain data. More recently, the so
called robust optimization techniques have been investigated
by several authors [2, 1, 4]. Those techniques are more mean-
ingful in formulations with prior bounds on the size of the
uncertainties on the data. Specifically, we consider the case
where we have data with bounded errors. The solutions com-
ing from robust optimization models are more stable and
more appropriate for this kind of uncertainty.

Ben-Tal and Nemirovski [2] proposed the foundation of
robust convex optimization based on previous work in robust
control. Their assumption is that the data defining a convex
optimization problem are not accurately specified, and the
only knowledge about those is that they belong to a bounded
uncertainty set U . They have shown, that when this set U
is an ellipsoidal uncertainty set, then the robust convex pro-
gram corresponding to some of the most important generic
convex problems, such as linear programming, semi-definite
programming and others, is a convex optimization problem
which can be solved by an efficient algorithm, such as poly-
nomial time interior point methods.
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2.5 Robust SVM Classifier

In [14], a robust SVM classifier development is described.
This research assumes noisy data with bounded errors on
the linear programming (LP) SVM formulation. Specifically,
this approach assumes that a data point can be represented
through a sphere with a known radius. Accordingly, the
supporting hyperplane resulting from the model will be on
the boundary of the sphere that contains the data closest to
the separating hyperplane (classifier) in one side and on the
boundary of the sphere from the separating hyperplane in the
other side. In other words, the training data points (repre-
sented through the centers of the corresponding uncertainty
spheres) can be modified through a new set of data points that
are obtained by shifting the points labeled as +1 along −w
and the points labeled −1 along w, respectively to its bound-
ary of uncertainty (see Figure 2). The optimization problem

Figure 2. Geometric illustration of robust SVM

using the approach in [14]

formulation is given as

min
w,b,t

‖w‖1 + C

�∑
i=1

ti (10)

Subject to

yi 〈w, x̃i〉 − √
η ‖w‖ + yib + ti ≥ 1

ti ≥ 0, i = 1..�,

where
√

η is the radius and x̃i is the center of the uncertainty

sphere. Setting w =
�∑

i=1

yiαixi and linearizing the objective

function, the above problem can be formulated as follows:

min
�∑

i=1

αi + C

�∑
i=1

ti (11)

Subject to

√
η
√

αtk̃α − yi

�∑
i=1

yjαjk(x̃j , x̃i) − yib − ti + 1 ≤ 0

ti ≥ 0, αi ≥ 0, i = 1, .., �,

Figure 3. Finding the best classifier for data with uncertainty.

The bounding planes are moved to the boundary of the spheres to
obtain maximum margin

where k̃ = k̃(xi, xj) = yiyj < xi, xj >. It is shown that
the resulting SVM classifier is robust to the noise of the data
[14].

3 Robust SVM Formulation

In this section, we develop our model. We begin with the
robust support vector machine (R-SVM) for binary classifi-
cation problems. The next step is extending our models for
function approximation or regression problems.

Suppose that we have a set of � samples {x1, x2, .., x�}
and we want a weight vector w and a bias b that satisfies
yi(wxi + b) ≥ 1 for all i = 1, .., �. Recall SVM formula-
tion in 2. Now consider that our data are perturbed. Instead
of having the input data point xi we have xi = x̃i + ui where
ui is a bounded perturbation with ||ui|| ≤ √

η where η is a
positive number, and x̃i is the center of the uncertainty sphere
where our data point is located. Therefore, the constraints in
(2) become

min
1
2
αT Kα + C

�∑
i=1

ti (12)

yi(< w, xi > +b) + t ≥ 1 ⇔ (13)

yi(< w, x̃i > + < w, ui > +b) + ti ≥ 1, i = 1, .., �

ti ≥ 0

Our concern is the problem of classification with respect to
two classes. In order to have the best separating hyperplane
we try to minimize the dot product of w and u i in one side
of the separating hyperplane (class -1) and maximize the dot
product of w and ui in the other side (class 1) subject to
||ui|| ≤ √

η. By this logic we are trying to maximize the dis-
tance between the classifier to both points on different sides
(see Figure) 3. Therefore, we have to solve the following
problem

max < w, ui > (14)
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Subject to ||ui|| ≤ √
η

Using Cauchy’s Schwarz inequality (| < w, u > | ≤
‖w‖ . ‖u‖ ⇒ −‖w‖ . ‖u‖ ≤< w, u >≤ ‖w‖ . ‖u‖), the
maximum of < w, ui > is equal to ‖w‖ . ‖u‖. Hence, re-
ferring to (14) the maximum of the dot product of < w, u i >
will be

√
η ‖w‖. By substituting this maximum value in (12),

we have

min
1
2
αT Kα + C

�∑
i=1

ti (15)

Subject to√
η ‖w‖ − wx̃i − b + ti ≥ 1, for yi = −1√
η ‖w‖ + wx̃i + b + ti ≥ 1, for yi = +1

ti ≥ 0, i = 1, .., �

If we map the data from the input space to the feature space
F ,we can represent w in the space F as

w =
�∑

i=1

αiϕ(x̃i) (16)

By substituting w with the above representation and substi-
tuting < ϕ(x̃), ϕ(x̃)′ > with k(x̃, x̃′), we have the following
R-SVM formulation:

min
1
2
αT Kα + C

�∑
i=1

ti (17)

Subject to
√

η
√

αT Kα − Kiα − b + ti ≥ 1, for yi = −1
√

η
√

αT Kα + Kiα + b + ti ≥ 1, for yi = +1
ti ≥ 0

where Ki is the 1x� vector corresponding to the ith line of
the kernel matrix K . Note that we reorder the rows of the
matrix K based on the label. It is important to note that most
of the time we do not need to know explicitly the map ϕ. The
important idea is that we can replace < ϕ(x), ϕ(x)′ > with
any suitable kernel k(x, x′).

By the margin(η), we define the margin of separation
when the level of uncertainty is η. Then

margin(η) =
(1+‖w‖√η−b)−(−1−b+

√
(η)‖w‖)

‖w‖ (18)

=
2+2

√
η‖w‖

‖w‖

= 2
‖w‖ + 2

√
η = margin(0) + 2

√
η.

Note that the margin of separation is increasing. In the case of
robust optimization formulation [14], margin(η) = margin(0)-
2
√

η. Now, consider the support vector regression problem
in equation (8). Using perturbed data as explained above, we
define the robust support vector regression (R-SVR) problem
as follows

min
1

2
‖w‖2 + C

�∑
i=1

(ti + t∗i) (19)

Subject to

yi− < w, x̃i > − < w, ui > −b − ti ≤ ε, i = 1, .., m

< w, x̃i > + < w, ui > −yi + b − t∗i ≤ ε, i = 1, .., m

ti, t
∗

i ≥ 0

∀ui ∈ �d, such that||ui|| ≤ √
η.

By substituting w with Kiα, and the term < w, u > with
its maximum value,

√
η
√

αT Kα, we obtain a robust support
vector regression (R-SVR) formulation as:

min
1
2
αT Kα + C

�∑
i=1

(ti + t∗i) (20)

Subject to

yi − Kiα −√
η
√

αT Kα − b − ti ≤ ε, i = 1, .., m

Kiα +
√

η
√

αT Kα − yi + b − t∗i ≤ ε, i = 1, .., m

ti, t
∗
i ≥ 0

∀ui ∈ �d, such that ||ui|| ≤ √
η.

The geometric illustration of robust SVR is given in Fig.4.

�

�

Y

X

Figure 4. Geometric illustration of robust SVR

4 Computational Results

In this implementation R-SVR is applied in time series Flour
price data [5] and Abalone data [3]. Table 1 and Table 3 show
the performance of R-SVR with uncertainty on Flour price
data and Abalone data. As shown in those tables, applying
uncertainty can reduce the MSE of SVR significantly. Table 2
indicates that varying ε can improve the performance of SVR.

5 Conclusions

In this work, motivated by the presence of uncertainty in real
data,a novel robust support vector regression approach has
been developed. The impact of uncertainty on the data to the
generalization error was investigated for regression problems.
Robust SVR (R-SVR) improved the performance of regular
SVR.
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Table 1. MSE of R-SVR on flour price data
with RBF kernel with η varied, ε = 0.0
η C=1000, σ = 10
0.0 265.79
0.00001 164.32
0.0001 121.89
0.001 46.33
0.01 381.35

Table 2. MSE of R-SVR on flour price,
RBF, C=1000,σ=10,η=0.001

ε MSE
0 46.33
1 45.77
3 41.04
5 47.90
10 98.90
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