

Auto-generation of Multi-fielded Domain-Specific Search Forms

ROBERT STEELE
Faculty of Information Technology
University of Technology, Sydney

PO Box 123, Broadway, NSW 2007
AUSTRALIA

Abstract: - Custom made domain-specific query interfaces can provide substantially greater search power than
single-field keyword search interfaces. However while there are tools available to automatically build single-field
search systems for a given repository of documents there is currently no way to automatically generate multi-
fielded domain-specific query interfaces and systems. In this paper we propose a technique that given an object-
oriented conceptual model of data as input can automatically generate a complex domain-specific navigable query
interface and search system for that data. Such techniques can have significant impact in making it easier to build
e-Commerce Web sites or in rapidly developing query interfaces for integrating data systems as is typically
required by the dynamically changing business partners in Extended Enterprise scenarios.

Key-words: - e-Commerce, Object-oriented conceptual models, UML, RDF, Extended Enterprise

1. Introduction
It is very important to be able to search across Web
data and enterprise data. Search engines provide for
searching of the Web and enterprise search systems
provide for searching across enterprise data.
Enterprise search systems [20] are able to
automatically provide single-field or keyword-based
search systems but cannot automatically provide
complex domain-specific query interfaces.

Enterprise data (and Web data) tends to be
highly heterogeneous, involving multiple differing
storage formats, and is distributed in the sense that it
is typically not stored in a single monolithic
repository, particularly in extended enterprise
scenarios. With the wide acceptance of object
oriented modeling more and more systems are being
built using OO model syntax [8]. The Unified
Modeling Language (UML) [14], a representation
for such models, has become widely used and
supported by software tools, as such object oriented
conceptual models represent an already widely
deployed model that can provide a unifying model
across data that is both heterogeneous and
distributed. While such models can be utilized as a
unifying model in this way they also have a
particularly natural fit with some data storage
systems. In particular the data in OO databases can
be most naturally modeled in this way.

In this paper we present a technique for
automatically creating a powerful multi-fielded
query interface and data search system solely from
an OO conceptual model of the data. This technique
has the benefits that it does not require domain-
specific manual expertise and effort to build the
search system. In extended enterprise scenarios
where enterprises relatively dynamically adjust
collaboration partners, such easy to establish
powerful query systems are very important. Via
RDF it supports leaving heterogeneously stored data
in its native formats while adding semantic markup,
it allows for distributed storage of the data, it
provides a novel and powerful search interface for
data and allows dynamic generation of query
interfaces. The technique has a level of broad
applicability given that it can be applied to any
collection of heterogeneous data that has been
modeled using a OO conceptual model.

2. Background
Object-oriented conceptual models provide a way to
model the structural aspects of objects [6]. The
kinds of relationships supported are generalization,
association and aggregation. As OO modeling is
widely adopted for building software systems, OO
modeling of data lends itself to natural integration of
data sources with software systems. OO conceptual

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp115-122)

models are adopted here for these reasons and due to
its well developed tool support.

EXtensible Markup Language (XML) [1] and
XML Schema [4] allow flexibility in defining the
structure of documents and services [16]. Resource
Description Framework (RDF) [2] and Resource
Description Framework Schema (RDF(S)) [3] are
XML-based technologies that provide a way to
attach semantic information to resources. Resources
can be words, parts of documents, Web pages,
whole Web sites or other data units. The attaching
of semantic information requires the writing of RDF
statements. These take a subject-property-object
form. For example <http://www-
staff.it.uts.edu.au/~rsteele, created by, Robert>.
RDF(S) introduces the concept of class, or resource
“type”, and defines some inbuilt semantic
relationship primitives (inbuilt properties) such as
subClassOf, subPropertyOf, domain and range.
RDF(S) hence enables the defining of classes,
relationships between classes and the definition of
new relationships (properties).

This paper brings together OO conceptual
models, RDF and auto-generation of GUIs (in
particular WWW hypermedia query interface). This
topic exploits the relationship between meta-data (or
semantic information about data) and search.

Substantial work has been done to explore the
implications of RDF and RDF-based systems for
knowledge management and the integration of
heterogeneous data sources. Projects in this area
include On2broker [9] and Hera [18]. Hera makes
use of RDF with an aim to provide a semantic
interface for integration of heterogeneous data
sources. While these projects explore many ways of
utilizing semantic markup, they do not explore the
relationship between object-oriented conceptual
models, RDF and user interfaces and how these can
be linked to provide an automated system
development technique.

Recent research, in some cases as part of these
above projects, has also explored how to provide a
user interface to RDF-based repositories [11, 12, 13,
19]. These systems typically propose graphically
complex interfaces that are also typically not
browser-based. The emphasis is on navigation and
browsing interfaces to repositories not on the auto-
generation of a data query interface. In addition
querying in these projects makes use of complex
query languages. The technique proposed in this
paper aims to produce a simple but powerful query
interface for the data that is hypertext-based and
does not require the use of a query language.

It has been observed that the adoption of
semantic markup technologies such as RDF has
faced a “chicken and egg” problem [5]. That is, that
individuals and enterprises have generally not
provided such semantic mark-up of their data as
there have not been compelling applications to make
use of it, and there have not been compelling
applications that make use of such mark-up as
semantic mark-up is not yet widespread. The
technique proposed in this paper would provide one
possible immediate and tangible benefit from adding
RDF markup – an auto-generated multi-field query
interface.

3. Auto-generation of Query
Interfaces
The technique for automatically generating query
interfaces and search systems from an object-
oriented conceptual model has the following steps:

1. Develop an OO conceptual model of the
data

2. Transform to RDF Schema representation of
the OO conceptual model

3. Attach the RDF markup to the data
informed by the conceptual model

4. Auto-generate the query interface (HTML,
WML) from RDF representation of model

3.1 Develop Object-Oriented Conceptual
Model
The object oriented conceptual model or the
underlying data may have been produced first.
Ideally a model for the data will have been first
developed and then the data stored in terms of this
model. In this case the data will already be labeled
in terms of the classes and relationships in the
conceptual model. An object-oriented database
would clearly conform directly to this model.

In other cases the data will exist prior to object –
oriented modeling. This will be the case with large
amounts of legacy data. In this case the creation of
the object-oriented conceptual model will proceed
from examination of the existing data. Some
domains will afford a more natural fit between data
and this modeling approach. Examples of well
suited domains might be electronic health records,
business documents/ records and other application
domains that have a fielded format or obvious
specialization/ generalization relationships.

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp115-122)

A common and convenient representation
format for the object-oriented conceptual model is
UML. A UML class diagram for instance can be
used to represent the data model. As our extended
example in this paper, consider the scenario of a
roaming mobile device user, accessing a location-
based service system, who wishes to search for
products and services of businesses in the local
vicinity. In this example the entities involved can be
represented using UML. A small fragment of the
UML-encoded conceptual model for this scenario is
shown in Figure 1.

HardwareShop
name

EatingPlace
name
cuisine

Business
businessName

MenuItem
name
price

Fig. 1: UML class diagram of business and restaurant
related classes

For example the model to represent this scenario
might include classes such as Business,
HardwareShop and EatingPlace. The Business class
is a generalization of the HardwareShop and
EatingPlace classes (amongst others). Each Business
has a businessName and HardwareShops and
EatingPlaces also have names. EatingPlaces also
have an attribute that is “type of cuisine”. The
EatingPlace class also has an aggregation
relationship with MenuItem. That is each
EatingPlace can have one or more MenuItems.
These MenuItems also have some complex structure:
a name and a price.

3.2 Transformation to an RDF Schema
Representation of the Conceptual Model
We transform the object-oriented conceptual model
into an RDF Schema representation for two reasons:

• We now have an XML-based representation of
the model that can be used as an input for
further automated transformation and
generation

• RDF is an XML-based format intended and
well-suited to labeling resources/data in terms
of semantic relationships and it can be used to
markup the data that is to be searched. Once it
is used to markup the data it will enable the
applying of XML query techniques such as
XPath queries that can search in terms of
named concepts of the conceptual model

UML class diagrams can be automatically
transformed into RDF Schema. Existing related
work by Feng, Chang and Dillon [7, 8] provides
transformations from object oriented conceptual
models to XML Schema. Of particular relevance to
this paper is that an RDF Schema can then be used
to automatically generate a query interface to the
data that has been modeled.

An example of the RDF Schema that would be
generated for our scenario of a system to access
local mobile services is shown in Figure 2. The
generated RDF Schema can then be used to markup
documents. In our example this would involve the
marking-up of data about the product and service
offerings of local businesses.

In this transformation each class in the UML
diagram is mapped to a corresponding RDF class.
The RDF subClassOf property is used to represent
the generalization/specialization relationships from
the OO conceptual model. In our example this
means that the relationship between the Business
class and the HardwareShop and EatingPlace classes
is represented in the RDF representation via the
subClassOf RDF(S) property.

Where ever a class has an attribute or a class in
an aggregation relationship a corresponding RDF
property is defined. However where ever a class
attribute(e.g. name, cuisine) is present in the OO
conceptual model it is mapped to a property with a
range of type RDF Literal in the RDF
representation of the model. Where there is an
aggregation relationship in the conceptual model to
another class, it is mapped to a property in the RDF
representation that has as a range the class that is to
be aggregated.

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp115-122)

Fig. 2: Object-oriented conceptual model represented
using RDF Schema

3.3 Attaching RDF markup to the Data
Providing “semantic markup” such as RDF markup
is typically seen as something that needs to be
manually implemented. However in the technique
proposed in this paper this markup activity may in a
number of cases be wholly or partially automatable.

This would be particularly true where the search
system to be developed is to apply to search of data
within a single enterprise.

Where search is to occur within an enterprise
there is a greater level of common authority over the
data and hence the ability to enforce a model across
all of the data. In this scenario in some cases a
conceptual model would be developed first and then
data stored and represented consistently with this
model from the beginning. If this were the case it
would be possible to automate the process of
marking up the data with RDF. Each piece of data
corresponding to a particular class or property
within the conceptual model will now be labeled
with its RDF equivalent as explained in Section 3.2.
This might for instance involve having the
XML/RDF that asserts this markup being located in
a separate file and this file providing a link property
that specifies the URL where this piece of data is
actually located.

Fig. 3: An example RDF snippet

There would also be no need for manual RDF
markup where the data source is an OO database. As
such the technique proposed in this paper provides a
way to auto-generate a powerful query interface to
OO databases without manual intervention.

In other cases where search occurs across
multiple enterprises for example it will be more
difficult to enforce a common conceptual model
preceding data storage. The running example used
in this paper is closer to this scenario. In this case it
is likely that some amount of manual effort will be

<rdf:RDF
xmlns:rdf = "http://www.w3.org/TR/WD-rdf-
syntax#"
xmlns:mn = http://www.it.uts.edu.au/menu#

<rdf:Description id="menuItem1">
 <rdf:type=mn:MenuItem>
 <mn:name> Chilli Basil Chicken </mn:name>
 <mn:price> 5.80 </mn:price>
</rdf:Description>

<rdf:Description id="menuItem2">
 <rdf:type=mn:MenuItem>
 <mn:name> Green Curry Chicken </mn:name>
 <mn:price> 5.80 </mn:price>
</rdf:Description>
</rdf:RDF>

<rdf:RDF
 xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-
syntax-ns#"
 xmlns:rdfs= "http://www.w3.org/2000/01/rdf-
schema#"

<rdfs:Class rdf:ID="Business"/>

<rdfs:Class rdf:ID=”EatingPlace”>
 <rdfs:subClassOf rdf:resource="#Business” />
 </rdfs:Class>

<rdfs:Class rdf:ID=”HardwareShop”>
 <rdfs:subClassOf rdf:resource="#Business” />
 </rdfs:Class>

<rdfs:Class rdf:ID=”MenuItem”/>

<rdf:Property rdf:ID="hasMenuItem">
 <rdfs:range rdf:resource="#MenuItem " />
 <rdfs:domain rdf:resource="#EatingPlace" />
</rdf:Property>

 <rdf:Property rdf:ID="name">
 <rdfs:range rdf:resource =
"http://www.w3.org/2000/01/rdf-schema#Literal" />
 <rdfs:domain rdf:resource="#MenuItem" />
 <rdfs:domain rdf:resource="#EatingPlace" />
 <rdfs:domain rdf:resource="#HardwareShop" />
 </rdf:Property>

<rdf:Property rdf:ID="businessName">
 <rdfs:range rdf:resource =
"http://www.w3.org/2000/01/rdf-schema#Literal" />
 <rdfs:domain rdf:resource="#Business" />
</rdf:Property>

 <rdf:Property rdf:ID="cuisine">
 <rdfs:range rdf:resource =
"http://www.w3.org/2000/01/rdf-schema#Literal" />
 <rdfs:domain rdf:resource="#EatingPlace" />
 </rdf:Property>
</rdf:RDF>

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp115-122)

required to provide the RDF markup. For example,
in our scenario each business would need to provide
an RDF statement that their business is for example
of class Business, HardwareShop or EatingPlace or
other appropriate category.

See Figure 3 for an example of the RDF markup.
Two MenuItems for one particular EatingPlace are
marked up. This has involved specifying the
properties for each that have MenuItem class as the
domain. In reality there would typically be many
more MenuItems for each EatingPlace. In addition
there would be many EatingPlaces, HardwareShops
and other Businesses. If a more example complete
conceptual model was given for our example
scenario it could also include classes to represent
products and services in other businesses.

An advantage of this approach is that existing
files providing such information as the menu items
of a restaurant or the inventory of a hardware shop
can be marked-up just by adding the RDF tags. This
of course could be done with graphical-based tools.
Or for example information about menus or a
business can remain in separate files that involve
different formats (different businesses could use
different data formats also). In this case the RDF
(XML) code showing the properties provided by the
conceptual model would still have to be provided in
the case of all businesses. This RDF/XML code
would include URLs to the existing data files.

3.4 Automatic Generation of Query
Interfaces
Given the RDF Schema representation of the
conceptual model a multi-fielded query interface
can be automatically generated. The basic structure
of the interface will be driven by the class hierarchy
of the model. This will have a tree-like or multiple
tree-like structure. While RDF supports a directed
graph-like structure in general, OO models have a
more tree-like structure.

See Figure 4 for an example of a generated
HTML query interface. The use of HTML here
underscores the fact that the technique introduced in
this paper can be applied to automatically generating
Web application interfaces in some cases.

The class hierarchy (specified by the subClassOf
property in the RDF) can be completely or partially
shown. Typically just a subset of the classes might
be shown. Hops down the class hierarchy are in fact
displayed in our interface as offsets to the right from
the parent class. Sibling classes in the inheritance/

specialization hierarchy are shown offset vertically
from each other but with equal

Business

businessName

HardwareShop

name

EatingPlace

name

cuisine

MenuItem

name

price

Fig. 4: Generated HTML page for querying

offset from the right. In our example this manifests
itself as presenting the Business class at the top and
HardwareShop and EatingPlace both below it but
offset slightly to the right by the same amount (as
they are sibling classes). Any child classes, of for
example EatingPlace, would appear further to the
right again and below the EatingPlace class.

Each property that has a RDF Literal as its range
now has a textfield displayed next to its property
name and each of these property names and
associated textfields appears directly under the class
which is the domain of the properties (See Figure 4).
That is, attributes from the OO conceptual model
become in the RDF representation, properties with
RDF Literal as their range and now become the
textfields into which the user can enter search words.

Classes in the hierarchy will be the domain of
some properties that have as a range another class.
This other class (the range class) will be displayed
directly to the right of the domain class including its
textfields that correspond to its properties with
Literal domain. An example of this in Figure 4 is the
MenuItem class, along with its name and price
textfields, that is displayed to the right of the
EatingPlace class.

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp115-122)

4. Using the Query Interfaces
The advantages of the automatically generated
query interface in terms of search capability are:

• Multiple meaningfully labeled textfields
appear on the interface. Search words
entered into these textfields are implicitly
understood to be queries of the classes of
the conceptual model/ RDF model,
corresponding to the textfield used.

• The semantic mark-up of the resources/data
and the semantic relationships this encodes
allows the propagation of queries at query
time to appropriately semantically related
data that was not targeted directly by the
user search

Fig. 5: Formal specification of search semantics

The first advantage mentioned means that the user
implicitly provides more information to the search
system than via a single-fielded interface. By
choosing a particular textfield the user is signaling
their interest in a particular class of information and
these textfields in fact map to RDF classes that have
defined semantic relationships with other data in the
repository. This provides extra helpful information
to be factored into the query processing. The
automatic generation of the interface provides the
dual advantage that it obviates the need for human
effort in this task and also provides close semantic
associations between the textfields and entered
values and the semantics of the backend system and
data.

The second advantage is that queries to a
particular textfield can be propagated to
semantically associated classes of data. In particular
the system will propagate a query entered into a
textfield to all descendant classes of the class to
which this textfield is a property. The system will
try to match the entered query value to all values of
properties with a range having RDF Literal type of
all descendant classes. This corresponds to the user
having carried out the same search in all of the
textfields of the descendant classes. A formal
specification of these search semantics is provided
in Figure 5.

For example if a user enters the word “Thai”
into the cuisine textfield this will lead to a search of
all cuisine elements e.g. <mn:cuisine> Thai food
</mn:cuisine>, <mn:cuisine> Italian
</mn:cuisine> found in the repository. This search
will be implemented as an XPath query. There will
be an attempt to match “Thai” against the text value
found in each cuisine element. A list of associated
EatingPlace elements will then be returned. The
display of results would be the matching
EatingPlace elements with just their properties with
Literal class as their range having their values
displayed. These could then be selected and be
further searched.

If a user enters Thai in the businessName
textfield of the Business class it will first be used to
search against the text value of all businessName
elements in the repository. However, the Thai string
entered by the user will then also be used to search
against all properties with RDF Literal as their range
further down the class hierarchy (that is all
properties that have textfields). In this case if Thai

Each RDF statement is a triple of the form:
{pred, sub, obj}

Where pred is a property (member of Properties), sub
is a resource (member of Resources), and obj is either
a resource or a literal (member of Literals).

The notation [I] denotes the resource identified by the
URI I and quotation marks denote a literal. RDF
Schema [3] defines classes as “types” of resources.

A GUI textfield labeled p, corresponds to RDF
property p.
A user is assumed to enter query “q” into the textfield
p

Let C be a RDF class s.t. {domain, p, C}

Let R1
= the set of resources of class C that have “q” as the
object of property p
= {r | {type, r, C} ∧ {p, r, “q”}}

Let SubC
= the set of all descendent classes of C

Let SubCProp
= the set of all properties of descendent classes of C
with Literal range
= {x | ∃ SC ∈ SubC {domain, x, SC}∧ {range, x,
rdf:Literal}}

Let R2
= {r2 | ∃ SC ∈ SubC ∃ sp ∈ SubCProp {type, r2,
SC}∧ {sp, r2, “q”}}

The query results for query “q” in textfield p
= R1 ∪ R2

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp115-122)

were mentioned in the name attribute of any
subclass of Business (HardwareShop or EatingPlace)
or as the cuisine attribute of an EatingPlace these
businesses would also be listed to the user. The
search would not extend to MenuItem attributes – it
only applies to attributes of the subClassOf
descendants of Business on the basis that as they are
specializations of the higher level class and the
search is semantically relevant to them in this way.

In our example, a user can also type a food name
directly into the MenuItem, name textfield. In this
case all MenuItems across all EatingPlaces would
be searched. The set of matching MenuItems would
be returned to the user. The user will then be
provided with “backlinks”: in this case to the
corresponding EatingPlaces.

5. Discussion
The query system implicitly adduces from users,
semantic information about their query by requiring
them to choose a textfield that has a defined
semantic position in the data model. While a single-
field keyword interface will match an entered
keyword to any document or part of a data
repository, this is not the case with this auto-
generated query system. The system will start with a
semantically constrained subset (set of elements) of
the repository based on the textfield into which a
query is made.

The auto-generation of query interfaces gives
the ability to dynamically vary the interface in a
number of ways. For example an interface
representing a different subset of the conceptual
model could be presented to different users based on
their access role. This could be used to give larger or
smaller search capabilities to different users. More
trivially it gives the ability to generate a device-
specific interface – in one case for a mobile device
in another case for a PC client.

6. Conclusion
This paper has presented a technique for
automatically generating a query interface to data
from an object-oriented conceptual model of that
data. The object-oriented conceptual model provides
a unified semantic over heterogeneous data and is
also the model used by many existing data stores.
By generating a multi-fielded, domain-specific
interface a superior from of search system can be
provided. This ability to quickly build a powerful

query system can help in the building of e-
Commerce Web sites and is well suited to quick
system integration as is required by the changing
business partners in an extended enterprise. In
addition via providing a ready benefit from RDF
markup this may contribute to relieving the current
“chicken and egg” problem that the widespread
adoption of semantic markup is facing.

References:
[1] Consortium, W. W. W. 2000. Extensible markup

language (XML) 1.0. Available at
http://www.w3.org/ TR/REC-xml

[2] Consortium, W. W. W. 1999. Resource description
framework (RDF) Model and Syntax Specification.
Available at http://www.w3.org/TR/REC-rdf-
syntax/.

[3] Consortium, W. W. W. 2000. Resource description
framework (RDF) schema specification 1.0.
Available at http://www.w3.org/TR/rdf-schema/.

[4] Consortium, W. W. W. 2001. XML Schema Part 0:
Primer. Available at http://www.w3.org/TR/
xmlschema-0/.

[5] Dill, S., et. al. SemTag and Seeker: Bootstrapping
the Semantic Web via Automated Semantic
Annotation. WWW03, Budapest, Hungary, 2003.

[6] Dillon, T., Tan, P. Object Oriented Conceptual
Models. Prentice Hall. Inc. 1993.

[7] Feng, L., Chang, E., Dillon, T. A semantic network-
based design methodology for XML documents.
ACM Transactions on Information Systems (TOIS),
Volume 20, No. 4, 2002, pp 390 – 421

[8] Feng, L., Chang, E., Dillon, T. Schemata
Transformation of Object-Oriented Conceptual
Models to XML. Intl. Journal of Computer Systems
Science & Engineering, 1, 45-60, 2003.

[9] Fensel, D., Angele, J., Decker, S., Erdmann, M.,
Schnurr, H.-P., Staab, S., Studer, R., and Witt, A.,
On2broker: Semantic-based access to information
sources at the WWW, in World Conference on the
WWW and Internet (WebNet99). 1999: Honolulu,
Hawaii.

[10] Google. http://www.google.com.
[11] Hendler, J. Agents and the Semantic Web. IEEE

Intelligent Systems. March/April 2001 (Vol. 16, 2).
[12] Maedche, A., Motik, B., Stojanovic, L., Studer, R.,

Volz, R. Ontologies for Enterprise Knowledge
Management. In IEEE Intelligent Systems, January/
February, 2003.

[13] Noy, N.F., Sintek, M., Decker, S., Crubzy, M.,
Fergerson, R.W., Musen, M.: Creating Semantic

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp115-122)

Web Contents with Protege-2000. IEEE Intelligent
Systems 48(2): 60-71, 2001

[14] Rumbaugh J., I.Jacobson and G.Booch, The UML
Reference Manual, Addison-Wesley, 1999.

[15] SOAP 1.1 Technical Report,
http://www.w3.org/TR/SOAP/, W3C, 2000.

[16] Steele, R., A Web Services-based System for Ad-hoc
Mobile Application Integration, IEEE Intl. Conf. on
Information Technology: Coding and Computing '03,
Las Vegas, 2003.

[17] UDDI.org: Universal Description, Discovery and
Integration for the Web. http://www.uddi.org.

[18] Vdovjak, R., Houben, G.J.: RDF-based architecture
for semantic integration of heterogeneous
information sources. In: Workshop on Information
Integration on the Web. (2001) 51-57

[19] Vdovjak, R., Barna, P., Houben, GJ. EROS: A User
Interface for the Semantic Web. 7th World
Multiconference on Systemics, Cybernetics and
Informatics, Orlando, Florida, July 27-30, 2003.

[20] Verity Incorporated. http://www.verity.com.
[21] Wi-Fi Specification. Available at

http://grouper.ieee.org/groups/802/11/.
[22] WAP Forum. Wireless Markup Language Version

2.0. Available at
http://www1.wapforum.org/tech/documents/WAP-
238-WML-20010911-a.pdf.

[23] Web Services Description Language (WSDL) 1.1.
http://www.w3.org/TR/wsdl

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp115-122)

