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Abstract: - Secondary structures help in the identification of biological features such as protein classification, 
protein structure and function, and evolutionary relationships between proteins. However, secondary protein 
structures are sometimes hard to identify from experimental analysis, therefore researchers are forced to rely on 
predictive information. In this paper we offer an evolutionary computation approach that combines clustering 
and genetic algorithms to produce schemata for the visual representations of protein secondary structures. The 
two major roles of a clustering algorithm are to a) generate parts of initial chromosomes in genetic algorithms 
and b) assist schemata in predicting secondary protein structures. According to our tests, the new approach 
improves Q3 accuracy by 12% compared to previous efforts. We also discuss some examples of schemata with 
interesting biological meaning. 
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1   Introduction 
Determining protein structure in a laboratory is much 
more difficult than identifying protein sequence, 
which explains why as of September 23, 2005 the 
Protein Information Resource (PIR) database 
contained 2,203,641 protein sequences while the 
Protein Data Bank (PDB) contained only 32,727 
protein structures. Accordingly, independent 
researchers and an organization known as the Critical 
Assessment of Techniques for Protein Structure 
Prediction support the practice of predicting protein 
structures from previously known sequences [1, 2]. A 
typical approach is to predict secondary protein 
structures from a sequence, then use a combination of 
the secondary information and various biological 
heuristic functions to improve predictive algorithms 
[3]. Protein secondary structures also play an 
important role in protein function discovery, protein 
classification, and establishing phylogenetic trees. 
For this reason, we decided to take a closer look at the 
natural instincts of protein secondary structures and 
their potential for assisting in protein secondary 
structure prediction.  
Most secondary protein structure prediction methods 
are incapable of clearly identifying observable 
regularity. In light of the low Q3 values currently 
reported by researchers [4], we proposed a schema 
generated by a steady-state genetic algorithm 

(SSGA), which are known to outperform 
association-rule mining methodology in RS130 data 
sets for these kinds of schemata [5]. In this paper, our 
schema discovery approach combines SSGA and 
clustering to identify high confidence schemata and 
to improve Q3 accuracy by at least 10 percent [6]. 
 
1.1 Schema Definition 
Protein secondary structures are designated as H 
(alpha helix, 3/10 helix, pi helix), E (beta bridge, beta 
ladder), or L (turn, bend) [7]. The regularity of 
secondary structures (which consist of amino acids 
and one secondary structure) are usually discussed in 
terms of factors that cause amino acids to combine in 
order to form a specific secondary structure. An 
amino acid that plays a role in certain secondary 
structures are affected by neighboring amino acids, 
while secondary structure sheets often require extra 
consideration for remote amino acids. In the same 
manner that many researchers de-emphasize the 
effect of remote amino acids on protein secondary 
structure [8], we decided to underplay the remote 
effect in order to simplify schema design.  
 
1.2 Representation 
We modified Holland’s (1975) one-dimensional 
schema format  
schema s∈{1, 0, *}l 
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(where l is a fixed length and * is either 0 or 1) into a 
two-dimensional format: 
schema s∈{an amino acid, *} (l-1)/2 X {an amino acid} 
X {an amino acid, *} (l-1)/2 → {H, E, L| one kind of 
secondary structures}, 
where l is a fixed length (an odd number) and * is 
don’t care. 
  
According to our proposed schema, the central amino 
acid plays a role that corresponds to a specific 
secondary structure due to non-asterisk amino acids 
on each of its two sides. In Figure 1, amino acid A is 
found in the first and last positions and amino acid L 
is in the center position. Amino acid L is eventually 
categorized as having a H protein secondary 
structure—in other words, L is only affected by the 
first position amino acid on its left side and fourth 
position amino acid on its right. The other asterisk 
positions (which have no affect on L) can consist of 
any amino acid. We focused on the 9 windows in the 
front part of the schema, since that length is long 
enough to contain sufficient local structural 
information for analysis [9]. 

 
Figure 1. Schema example. 

 
2 Preprocessing the Raw Data 
We established a data set according to the 
PDB_select protein chain list because it is 
representative of PDB chain identifiers that help 
researchers save considerable time and effort. The 
PDB_select protein chain list allows for introductory 
browsing, protein architecture analysis, prediction 
method development, and model building via 
modular construction [10]. 
 
2.1 PDB_select constraints 
There are many versions, from which no two proteins 
have more than 25% sequence identity to 95%, in the 
PDB_select list. Furthermore, it excludes chains 
according to the following criteria: 
• length less than 30 residues;  
• number of non-standard amino acid residues 
(including chain breaks) exceeds 5 percent of chain 
length;  
• resolution exceeds 3.5 angstroms;  
• R-factor exceeds 30 percent;  
• some chains are known to be of inferior 
quality; 
• number of residues without side chain 
coordinates < 90 percent chain length;  

• number of residues without backbone 
coordinates < 90 percent chain length;  
• content of ALA plus GLY exceeds 40 
percent of chain length; and 
• data on resolution or R-factor (i.e., 
NMR-structures) are not available. 
 
2.2 Constraints 
We separated the data set into two independent sets 
(training and testing) and used the most stringent 
25% PDB_select list (2,485 chains with 388,067 
residues). Next, we located the secondary structures 
of proteins in the 25% PDB_select list from the 
Database of Secondary Structure in Proteins (DSSP) 
of secondary structure assignments for all PDB 
protein entries. However, due to problems with DSSP 
secondary structure information, we eliminated some 
chains from the 25% list for the following reasons: 
• incorrect PDB identification in the 25% list; 
• no information in the DSSP files; 
• broken chains; or 
• inclusion of an unknown symbol X.  
Our data set consisted of 1,600 chains with 248,984 
residues. We randomly selected 1,200 chains for use 
as a training set for mining schemata; the remainders 
were used for testing. 
 
2.3 Data Set Analysis  
It was assumed that the distribution characteristics of 
the data set would affect the experimental results. We 
used the data in Table 1 to inspect a) whether a 

Table 1. Statistics for 20 amino acids in the 
PDB_select chain set.
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relationship exists between the amount of a schemata 
and the percentage of each amino acid in the data set, 
and b) the individual tendencies of all amino acids in 
the data set. Data in the first column of Table 1 are for 
20 amino acids and second and third column data 
represent the number of occurrences for each amino 
acid and their respective percentages. The final 
column contains data on the corresponding amino 
acids, number of occurrences, and percentage of 
secondary helix (H), sheet (E), and Coil (L) 
structures. The first row presents information on the 
number of occurrences and percentages of each 
secondary structure in the data set. 
 

Figure 2. An example of using sequence 1CTJ to 
make a training set. 
 
2.4 Making Training Sets 
For every protein sequence, each amino acid can be 
viewed as a central amino acid in a schema. We 
defined amino acids on both sides of a central amino 
acid as a “neighbor pattern.” According to our size 
choice of 9 windows, neighbor pattern length = 8, or 
4 amino acids on each side. To create the training set 
we placed the neighbor pattern into a corresponding 
bucket according to the central amino acid and 
secondary structure; a partially assigned training set 
is shown in Figure 2. A complete training set consists 
of 20*3 buckets. Using the fifth amino acid in the 
1CTJA protein sequence as an example, the neighbor 
pattern EADLLGKA should be put into bucket AH, 
since the central amino acid is A and its secondary 
structure is H. 

 
3 Cluster-based Genetic Algorithm 
Average Q3 accuracy in studies of protein secondary 
structure prediction using genetic algorithms is only 
46 percent. Three issues are considered central to this 
problem: data set selection, solution search space, 
and fitness function design. At first, for the data set in 
previous studies, RS130 cannot represent so far the 

whole known proteins. Moreover, the number of 
similarities among DSSP protein families is 
considered too high. These kinds of problems are not 
associated with PDB_select.  
Based on the 9-window size of the schema we 
applied, search space size is 20*3*21*8. To reduce 
search time, the very important thing is let genetic 
algorithm can search from good start. Therefore, 
once clustering was completed, we placed cluster 
centers as chromosomes into the initial population 
(Fig. 3). 
 

 
Figure 3. Our proposed clustering strategy. 
 
The fitness function gives evolutionary direction to 
chromosomes [11]. When designing our fitness 
function, we assumed that a good schema should 
have a strong tendency toward a certain secondary 
structure. Furthermore, our fitness function states 
that increased chromosome confidence in the training 
set also increases Q3 accuracy in the protein 
secondary structure prediction. 
As shown in Figure 4, our model includes 
evolutionary and application phases. With the 
exception of standard GA steps, during the 
evolutionary phase we generated some initial 
chromosomes by clustering. The evolutionary 
process makes use of a steady-state strategy. In each 
generation we placed certain high fitness 
chromosomes into our schemata set. Chromosomes 
placed in the set were removed from the population; 
the population consequently generated new 
chromosomes at random. 
 
For protein secondary structure predictions we cut 
the sliding windows (9 window lengths) to use as 
protein sequence patterns for testing. Each pattern 
aligns with all schemata in the schemata set. After 
alignment, the secondary structure of the most 
similar schema was selected as the predictive result. 
When the fitness of the most similar schema was 
insufficient, the pattern was aligned with the 
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neighbor patterns of cluster centers in the training set. 
The final predictive result was the secondary 
structure that the most similar cluster center belonged 
to. Our approach uses blosum62 as a substitution 
matrix for alignment purposes. 
 

 
Figure 4. Our cluster-based genetic algorithm for 
mining schemata and its application for predicting 
protein secondary structures. 
 
3.1 Population and Evaluation 
Our approach uses 20 populations for each amino 
acid. Each chromosome includes a neighbor pattern 
and a secondary structure. Initial populations take on 
the neighbor pattern of the cluster center; all other 
chromosomes are randomly generated. 
To evaluate a chromosome, we used its neighbor 
pattern for alignment with neighbor patterns in all 
secondary structure buckets. Alignment scores that 
exceeded a certain threshold were labeled as one hit. 
nH, nE, and nL are the respective hit numbers in the 
H, E, and L buckets. Chromosome secondary 
structure is determined according to the maximum hit 
number. 
 

 
Figure 5. Steady-state strategy for our cluster-based 
genetic algorithm. 
 
In the following equation, 
confidence=nSS/(nH+nE+nL)          (1), 

nSS is defined as the maximum hit number among 
nH, nE, and nL. Confidence is relative to Q3; one of 
our goals was to find schemata with distinct 
tendencies toward certain secondary structures. We 
defined the discrimination rate (DR) as  
DR=(nHighest-nSecond)/(nH+nE+nL)    (2), 
where nHighest is equal to nSS and nSecond is the 
second highest score among nH, nE, and nL. As a 
result,  
fitness=confidence*DR               (3) 
 
3.2 Steady-state Strategy 
The initial step in the steady-state strategy shown in 
Figure 5 is to randomly select two chromosomes, C1 
and C2. Two offspring are generated by one-point 
crossover and multi-point mutations of C1 and C2; a 
single S1 offspring is randomly selected from these 
two offspring. Another chromosome (C4) is selected 
from the population for comparison with the S1 
offspring in terms of fitness. The best chromosome is 
used to replace C4 in the population. 
 
4 Experimental Results 
Since our approach uses a clustering strategy for the 
initial population, we ran several trials using cluster 
numbers between 20 and 70 to predict protein 
secondary structures; results are shown in Figure 6. 
At 70 clusters our Q3 accuracy was 58.7 
percent—approximately 12 percent better than 
predictive results from studies using genetic 
algorithms only. 
 

 
Figure 6. Q3 accuracy in different cluster numbers 
using our approach. 
 
Table 2 presents a comparison of our Table 1 results 
with nr-PDB. Several differences are observed when 
K, W, and Y are in both PDB_select and nr-PDB. 
This underscores the importance of selecting a 
suitable data set. 
Selected schemata with interesting biological 
meaning and high fitness are displayed in Table3. 
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The central amino acid in the first schema is P; when 
its neighbor pattern is D***P**N, the central amino 
acid plays an L role in the secondary structure. Note 
that L is the tendency for D, P, and N in Table 2.  
 
 
Table 2. Secondary structure tendencies for each 
amino acid in nr-PDB and PDB_select chain sets. 

 
 
Table 3. Sample schemas of biological interest. 

 
 
5 Conclusion and Discussion 
In a previous study we reported that our steady-state 
genetic algorithm outperformed association rule 
mining in finding schemata for describing 
relationships between protein primary and secondary 
structures. The identified schemata provided 
biologists with sufficient data for studying protein 
secondary structure, but they were insufficient for 
predicting secondary structure. In this paper we 
addressed the issues of finding high-fitness schemata 
and improving secondary structure prediction. 
Although we were able to increase Q3 accuracy by 
approximately 12 percent, we acknowledge that Q3 
accuracy is still inadequate due to the insufficient 
number of found schemata. Two main reasons for this 
approach can not find sufficient schemata are the 
huge search space and incomplete status of current 
protein structure databases.  
Our future plans are to reduce search space by 
considering some protein evolution information—for 
example, HMM profile or PSSM. On the other hand, 
these schemata can be applied to a consensus strategy 
for secondary structure prediction. When other 
methods (e.g., SVM, PSIPRED, or PROF) are not 
reliable for predicting certain protein structures and 

when exit found schemata can be aligned with these 
corresponding amino acids, it is possible to 
determine these protein secondary structures. 
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