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Abstract: - We propose a co-adaptive approach to control coevolution-based eXtended Classifier System (XCS) 
parameters. Taking advantage of the on-line incremental learning capabilities of XCS, solutions that completely 
address target problems can be produced. A coevolution model allows two XCS systems to operate in parallel to 
solve target and parameter setting problems simultaneously. Since our approach only requires small amounts of 
information on performance metrics during early run-time stages, it requires little time to become efficient in 
terms of latent learning. Test results indicate that our proposed system outperforms comparable models 
regardless of the target problem’s stationary/non-stationary status. 
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1   Introduction 
Learning classifier systems (LCS) [2] were first 
introduced by John H. Holland (1975), who is also 
known as the father of genetic algorithms (GA). They 
use a combination of GA and reinforcement learning 
(RL) [8] to build adaptive rule-based systems that 
learn via on-line experiences [3, 11]. Depending on 
the architecture, LCS may be viewed as either an 
extended GA application or an RL algorithm. The GA 
component is responsible for comparing performance 
for the purpose of identifying better rules to replace 
unsuitable rules. The RL component is responsible 
for distributing credit among rules and resolving rule 
conflicts (e.g., distinguishing between appropriate 
and inappropriate rules). 
     Originally, LCS was not considered analyzable 
due to the complex nature of component 
interrelationships [3]. A renewed interest in LCS 
occurred after 1995, when Wilson proposed his 
eXtended Classifier System (XCS) [9] based on 
classifier prediction accuracy. A number of new 
models and applications have been presented since 
that time. Wilson retained most of Holland’s original 
ideas and architecture, but also made several 
substantial changes that gave XCS at least four 
advantages [3, 9, 10]: a) easier analyzability; b) the 
ability to deal with complex problems (e.g., 
optimization issues) that had previously been 
considered unsolvable; c) the addition of a robust 
generalization mechanism capable of generating 

compact, complete, maximized, and accurate 
solutions [11]; and d) the capability to use various 
representations to specify classifiers [6, 7]. 
     In the same manner as evolutionary computations 
(EC), the setting of parameters determines if XCS is 
capable of generating optimal or near-optimal 
solutions and its level of efficiency. All of the 
currently available approaches [1] to solving the 
parameter setting problem associated with LCSs 
have important drawbacks requiring improvement 
and modification. Our proposed co-adaptive 
approach, which is based on the coevolution concept 
and Dyna architecture [8], takes advantage of the 
incremental on-line learning capability of LCSs to 
produce solutions that completely cover a target 
problem.  
     The system simultaneously adapts parameters 
according to current learning performance and state. 
As shown in Figure 1, the framework consists of two 
LCSs. Main-XCS is responsible for solving the 
external target problem and meta-XCS is responsible 
for adapting internal parameters. We used the Dyna 
architecture to acquire the parameter control 
capability of meta-XCS in a short time period. Dyna 
uses an internal world model to save real experiences 
that are obtained during learning and uses them for an 
intensive latent learning process that shortens 
training time and speeds up the construction of a 
complete set of solutions. In [5], Lanzi showed that a 
combination of Dyna and XCS (Dyna-XCS) was 
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capable of greatly enhancing learning performance. 
For the present study we used Dyna-XCS to a) solve 
the slow-learning problem of the adaptive parameter 
control approach (which requires a long training 
period) and b) significantly enhance parameter 
control stability. 
     To solve the parameter control problem common 
to LCSs, we established a framework in which 
main-XCS and meta-XCS operate in parallel. 
Solutions co-evolve as the systems cooperatively 
adjust parameters to a given target problem. There 
are two advantages to using coevolution to solve the 
parameter setting problem: many benefits of the 
self-adaptive parameter control approach are 
maintained without expanding the target problem’s 
original search space, and the premature convergence 
problem that often accompanies this approach is 
avoided. 
 

 
Figure 1. Co-adaptive XCS framework. 
 
2   XCS Overview 
In the same manner as traditional LCS, XCS is a 
problem-independent and adaptive machine learning 
model. As shown in Figure 2, XCS has four 
components: a finite classifier population, a 
performance component, a reinforcement component, 
and a rule discovery component. Stored classifiers 
control the system via a horizontal competition 
mechanism and perform tasks by means of vertical 
cooperation. The performance component governs 
interactions with the target problem. The input 
interface (detector) is used to transmit the current 
target problem state to the performance component 
and to determine dominant classifiers according to an 
exploration/exploitation criterion. Through the 
output interface (effector), any action advocated by 
dominant classifiers is executed and receives 
feedback. The reinforcement component (credit 
assignment component) uses an algorithm similar to 
Q-learning [8] to update the reinforcement 
parameters of classifiers that advocated the output 
action. Finally, the rule discovery component uses a 
GA to search for better or more general classifiers 
and to discard incorrect or more specific classifiers. 
     When running XCS, performance metrics are used 
to observe system performance and to express 
classifier populations. Kovacs [11] divided these 
performance metrics into two categories: 

performance measures and population state measures. 
Three well-known on-line metrics for measuring 
performance in research environments and 
real-world XCS applications are performance ρ, 
system error, and population size. Performance ρ and 
system error are used to measure XCS learning 
capability according to results from target problem 
interactions. As one would expect, the population 
size performance metric (defined as the number of 
macro-classifiers in a classifier population) belongs 
to the category of population state measures. It is 
used to measure XCS learning quality. 
 

 
Figure 2. XCS architecture. 
 
3   Co-Adaptive XCS (CA-XCS) 
Our decision to use one XCS to adjust the parameters 
of other XCS system was based on its ability to deal 
with complex problems, especially its ability to 
represent various parameter control strategies [3, 6, 
7]. We used XCS to capture relationships and 
changing parameter patterns between parameter 
control strategies and to observe their effects on 
target problem. Its principal features include a) the 
combined advantages of adaptive and self-adaptive 
parameter control approaches that allow for the use 
of a coevolution model to simultaneously solve a 
target problem and parameter setting problem, and b) 
reduced time requirements for becoming efficient via 
a latent learning process that uses small pieces of 
information about performance metrics in the early 
stages of a run. 
 
3.1   The Model 
A schematic of the co-adaptive XCS (CA-XCS) 
architecture is shown in Figure 3. Its four principal 
components are main-XCS, meta-XCS, performance 
metrics, and parameters. Similar to the basic XCS, 
the main-XCS component is responsible for 
interacting with and solving the target problem. The 
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meta-XCS integrates Dyna architecture with XCSµ 
[4], which is especially useful in stochastic 
environments where the results of actions are 
affected by uncertainty. The meta-XCS component 
learns parameter control and adjustment strategies 
very quickly. The performance metrics component is 
responsible for collecting, recording, and evaluating 
the main-XCS component. The parameter component 
stores all parameters that need adjustment by the 
meta-XCS component and assigns updated 
parameters to the main-XCS component. 
 

 
Figure 3. CA-XCS architecture detail. 
 
3.2   Meta-XCS Component 
After running the main-XCS component for n trials 
(e.g., n = 50 in 6-MP), assuming a current discrete 
time step of t, the meta-XCS component receives an 
input message (st) ← (Πt, ρ, εsys, σpop) transmitted by 
the parameter and performance metrics components. 
In addition to the current parameter settings Πt 
affecting the main-XCS component, message st also 
contains measures of the main-XCS component’s 
performance ρ, εsys, and population states σpop. Based 
on the information in st, the XCSµ in the meta-XCS 
component determines an appropriate parameter 

control action at and instructs the parameter 
component to update the corresponding parameter pi 
in parameter setting Πt. Next, the meta-XCS 
component receives a st+1 message and rt+1 feedback 
in the form of a reward or penalty from the 
performance-metrics component. The meta-XCS 
component uses rt+1 for reinforcing learning and for 
storing the (st, at, st+1, rt+1) information within the 
Dyna architecture. During intervals between 
parameter control actions, the meta-XCS component 
uses these records for latent learning. The cycle 
continues until the target problem is solved by the 
main-XCS component or a user-requested stop 
criterion is met. 
 
3.3   Meta-XCS Dyna 
As shown in Figure 4, Dyna uses the XCSµ 
exploration interface to perform latent learning, and 
the parameter control operation is executed through 
the XCSµ exploitation interface. Theoretically, the 
latent learning and practical parameter control 
operations of meta-XCS can be processed 
simultaneously, but in practice, a higher priority is 
assigned to the parameter control operation in the 
meta-XCS component in order to decrease potential 
conflicts and to meet the hardware restrictions of 
sequential processing. Therefore, latent learning is 
delayed until parameter control operations are fully 
executed. However, we believe that the arrangement 
takes advantage of system idling time to improve 
parameter control and learning performance. 
 

 
Figure 4. Dyna-XCS architecture. 
 
4   Experiments 
In LCSs, the mutation operator plays an important 
role in learning performance and target problem 
solution quality. During the early stages of a run, the 
mutation operator provides novelty by moving 
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classifiers within the search space. A faster mutation 
rate helps speed up the rule discovery component. As 
an essential background operator during the later 
stages, mutation ensures some probability of finding 
a better solution. A slower mutation rate helps 
fine-tune existing classifiers without disturbing runs 
or decreasing learning performance. However, it is 
difficult to predetermine the optimal mutation rate for 
a given target problem or to dynamically adjust the 
mutation rate during every stage of a run. 
 
4.1   6-bit Multiplexer Problems (6-MP) 
Given the restrictions just described, we 
experimented with a co-adaptive parameter control 
approach in the form of the 6-bit multiplexer problem 
(6-MP)—a version of the well-known benchmark 
single-step problem for machine learning in general 
and LCSs in particular [9]. As shown in Figure 5, the 
input message signal transmitted to LCSs consists of 
a string of six binary digits in which the first (version 
A) or last (version B) two bits (called address bits) 
represent a binary index and the remaining bits 
represent data bits. The expected outcome is the 
value of the indexed data bit. For example, the 
expected outcome of “111110” in version A is 0, 
since the first two bits (11) represent index 3—the 
fourth bit following the address. The expected 
outcome of “010001” in version B is 1, since the 
second bit preceding the address is indexed. 
 

 
Figure 5. The 6-bit Multiplexer Problem (6-MP) 
 
     6-MP is considered challenging because of its 
non-linear characteristic, yet it yields many useful 
generalizations that help in comparing learning 
performance in various models. During each cycle, 
the 6-MP produces signals by randomly setting all six 
bits. Expected outcomes are computed as single bits 
from the generated signals, which are transmitted as 
input messages to the LCS on request and returned as 
output actions that are compared with expected 
outcomes. A positive feedback score of 1,000 means 
that a reward was returned to the LCS for 
reinforcement; a feedback score of 0 means that a 
penalty was returned. During the run, the 6-MP 
continues to produce 6-bit messages with similar 

probabilities as the LCS tries to learn the correct 
mapping relations between signals and expected 
outcomes—thus developing an optimal solution. 
     With the exception of the mutation rate, the 
default parameter for our experiments was N = 800, β 
= 0.2, α = 0.1, ε0 = 10, ν = 5, θGA = 25, χ = 0.8, θdel = 
20, δ = 0.1, θsub = 20, P# = 0.33, pI = 10, εI = 0, FI = 
0.01, pexplore = 0.5, doGAsubsumption = true, 
doActionSetSubsumption = true. All results discussed 
in this report represent an average of 30 runs. XCS 
performance metrics were recorded for each trial and 
computed as average moving window numbers in the 
last 50 trials. 
 
4.2   Stationary Problem Experiment 
In the first experiment we used the 6-MP to examine 
whether the meta-XCS component of CA-XCS could 
adjust the main-XCS component mutation rate. We 
used three original XCS (one each with fixed 
mutation rates of 0.01, 0.05, and 0.09) in the 
stationary problems to determine whether CA-XCS 
performance and learning quality was the best among 
all XCS version. 
     Performance metrics data from CA-XCS and 
three comparative XCS at fixed mutation rate of 0.01, 
0.05, and 0.09 in the stationary 6-MP experiment are 
shown in Figure 6. When the XCS mutation rate = 
0.09, the population metric was usually the worst and 
the performance ρ metric the best among the three 
XCS versions; furthermore, the system error metric 
decreased very quickly. When the XCS mutation rate 
= 0.01, performance ρ was the worst metric, the 
system error metric decreased very slowly, and the 
population size metric was the smallest among the 
three XCS versions; furthermore, the number of 
classifiers was nearly half that of the XCS at the fixed 
mutation rate of 0.09. 
 

 
Figure 6. Data for CA-XCS performance ρ, system error, 
and population size performance metrics for the stationary 
6-MP problem (version A) and other XCS versions with 
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fixed mutation rates of 0.01, 0.05, and 0.09. 
 
     When the CA-XCS was applied to 6-MP learning, 
the performance and learning quality dilemmas were 
easily avoided. As shown in Figure 6, it took between 
850 and 900 trials for CA-XCS to completely learn 
correct mapping relationships between the 6-MP 
input messages and expected outcomes. For the 
population size metric, the CA-XCS matched or 
outperformed the XCS at a fixed mutation rate of 
0.01—that is, after 10,000 trials, approximately 21 
classifiers were available for forming an optimal 
solution.      
     Results from average mutation rate adaptation 
processes for CA-XCS in the stationary 6-MP 
(version A) are shown in Figure 7. The results 
support those from previous studies on EC mutation 
rates. During early run trials, the meta-XCS 
component tended to increase the mutation rate in the 
main-XCS component in order to produce classifiers 
capable of learning correct mapping relationships 
between 6-MP input messages and expected 
outcomes at maximum speed. In the later trials, it 
tended to decrease the mutation rate in order to 
fine-tune existing classifiers and to obtain an optimal 
solution. 
 

 
Figure 7. Variation in CA-XCS mutation rate adaptation 
process for the stationary 6-MP problem (version A). 
 
     As shown in Figure 7, a constant high-to-low 
oscillation was observed in the mutation rate of the 
main-XCS component. It appears as though the 
meta-XCS component of CA-XCS tested the 
influence of a lower mutation rate on the main-XCS 
component during early run trials and tested the 
influence of a higher mutation rate on the main-XCS 
component during later trials. Mutation rates were 
abandoned if they exerted negative impacts on 
performance and learning quality. In these cases, the 
meta-XCS component returned to the opposite end of 
the mutation rate range and rapidly mastered a link 

among the mutation rate, performance ρ metric, 
population size metric, and similar situations via a 
latent learning mechanism. 
 
4.3 Non-Stationary Problem Experiment 
Our second experiment was similar to the first except 
that the second made use of 6-MP versions A and B 
(Figs. 8 and 9). For this experiment we ran 20,000 
trials—10,000 that were similar to the first 
experiment and 10,000 in which the input signal bit 
sequence was abruptly changed from version A to B. 
In the version B run, the two address lines were 
moved from the initial (b0b1) to final input signal bit 
(b4b5) position. Whenever the bit sequence 
underwent a sudden change during the second 10,000 
trials, the CA-XCS had to re-generalize the existing 
classifiers and rebuild an appropriate solution. The 
goal was to determine whether or not the CA-XCS 
could quickly reestablish a proper mutation rate 
following an abrupt change in the problem 
environment, recover the original learning 
performance and population size state, and still 
rebuild an optimal solution. 
 

 
Figure 8. Performance ρ, system error, and population 
size performance metrics of CA-XCS and other XCS 
versions with fixed mutation rates of 0.01, 0.05, and 0.09 
for the non-stationary 6-MP problem (versions A and B). 
 
     Details of CA-XCS performance are presented in 
Figure 8. Regardless of the performance metric, the 
system outperformed XCS at the fixed mutation rates 
of 0.01, 0.05, or 0.09. At a fixed mutation rate of 0.09, 
the performance ρ and system error metrics for the 
CA-XCS outperformed those from the XCS. At a 
fixed mutation rate of 0.01, the population size metric 
for the CA-XCS was similar to that from the XCS. 
An optimal solution aimed at the 6-MP version B was 
rebuilt after 20,000 trials. 
     Figure 9 has two mutation rate peaks, the first 
before 2,500 trials and the second between 10,000 
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and 12,400 trials. Each peak reflects the time 
required by the CA-XCS to learn from the beginning. 
According to these experimental results, the 
CA_XCS is capable of handling non-stationary 
problems at a high performance level. 
 

 
Figure 9. Mutation rate adaptation for the CA-XCS in the 
non-stationary 6-MP (versions A and B). 
 
5   Conclusions 
Previous studies of ECs and LCSs describe the search 
for robust or optimal parameter sets for target 
problem solutions as a time-intensive trial-and-error 
task requiring large amounts of computation 
resources. Different parameter values are essential 
for inducing an optimal balance between exploration 
and exploitation at different run stages. In response to 
the common problem of setting parameters for 
practical applications, we extended the original LCS 
with a parameter control approach in order to 
enhance performance and learning stability. 
     Our proposal for a co-adaptive approach to LCS 
parameters is based on a coevolution process and a 
Dyna architecture. The approach takes advantage of 
the on-line learning capabilities of LCSs; solutions 
produced in this manner cover entire target problems. 
Results from our experiments show that the 
co-adaptive approach was successful in terms of 
setting parameters according to target problem 
properties. In both stationary and non-stationary 
problem experiments, the system outperformed the 
models it was tested against. 
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