
Using a Coevolution Mechanism with a Dyna Architecture for
Parameter Adaptation in XCS Classifier Systems

Chung-Yuan Huang1,3, Chuen-Tsai Sun3, Yen-Wei Chu2,3

1) Department of Computer Science and Information Engineering
2) Department of Information Management

Yuanpei Institute of Science and Technology
306 Yuan Pei Road

Hsinchu, Taiwan 30015, ROC
3) Department of Computer Science

National Chiao Tung University
1001 Ta Hsueh Road

Hsinchu, Taiwan 300, ROC

Abstract: - We propose a co-adaptive approach to control coevolution-based eXtended Classifier System (XCS)
parameters. Taking advantage of the on-line incremental learning capabilities of XCS, solutions that completely
address target problems can be produced. A coevolution model allows two XCS systems to operate in parallel to
solve target and parameter setting problems simultaneously. Since our approach only requires small amounts of
information on performance metrics during early run-time stages, it requires little time to become efficient in
terms of latent learning. Test results indicate that our proposed system outperforms comparable models
regardless of the target problem’s stationary/non-stationary status.

Key-Words: - CA-XCS, Co-Adaptive, Coevolution, Dyna, Parameter Adaptation, Parameter Setting Problem

1 Introduction
Learning classifier systems (LCS) [2] were first
introduced by John H. Holland (1975), who is also
known as the father of genetic algorithms (GA). They
use a combination of GA and reinforcement learning
(RL) [8] to build adaptive rule-based systems that
learn via on-line experiences [3, 11]. Depending on
the architecture, LCS may be viewed as either an
extended GA application or an RL algorithm. The GA
component is responsible for comparing performance
for the purpose of identifying better rules to replace
unsuitable rules. The RL component is responsible
for distributing credit among rules and resolving rule
conflicts (e.g., distinguishing between appropriate
and inappropriate rules).
 Originally, LCS was not considered analyzable
due to the complex nature of component
interrelationships [3]. A renewed interest in LCS
occurred after 1995, when Wilson proposed his
eXtended Classifier System (XCS) [9] based on
classifier prediction accuracy. A number of new
models and applications have been presented since
that time. Wilson retained most of Holland’s original
ideas and architecture, but also made several
substantial changes that gave XCS at least four
advantages [3, 9, 10]: a) easier analyzability; b) the
ability to deal with complex problems (e.g.,
optimization issues) that had previously been
considered unsolvable; c) the addition of a robust
generalization mechanism capable of generating

compact, complete, maximized, and accurate
solutions [11]; and d) the capability to use various
representations to specify classifiers [6, 7].
 In the same manner as evolutionary computations
(EC), the setting of parameters determines if XCS is
capable of generating optimal or near-optimal
solutions and its level of efficiency. All of the
currently available approaches [1] to solving the
parameter setting problem associated with LCSs
have important drawbacks requiring improvement
and modification. Our proposed co-adaptive
approach, which is based on the coevolution concept
and Dyna architecture [8], takes advantage of the
incremental on-line learning capability of LCSs to
produce solutions that completely cover a target
problem.
 The system simultaneously adapts parameters
according to current learning performance and state.
As shown in Figure 1, the framework consists of two
LCSs. Main-XCS is responsible for solving the
external target problem and meta-XCS is responsible
for adapting internal parameters. We used the Dyna
architecture to acquire the parameter control
capability of meta-XCS in a short time period. Dyna
uses an internal world model to save real experiences
that are obtained during learning and uses them for an
intensive latent learning process that shortens
training time and speeds up the construction of a
complete set of solutions. In [5], Lanzi showed that a
combination of Dyna and XCS (Dyna-XCS) was

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp173-178)

capable of greatly enhancing learning performance.
For the present study we used Dyna-XCS to a) solve
the slow-learning problem of the adaptive parameter
control approach (which requires a long training
period) and b) significantly enhance parameter
control stability.
 To solve the parameter control problem common
to LCSs, we established a framework in which
main-XCS and meta-XCS operate in parallel.
Solutions co-evolve as the systems cooperatively
adjust parameters to a given target problem. There
are two advantages to using coevolution to solve the
parameter setting problem: many benefits of the
self-adaptive parameter control approach are
maintained without expanding the target problem’s
original search space, and the premature convergence
problem that often accompanies this approach is
avoided.

Figure 1. Co-adaptive XCS framework.

2 XCS Overview
In the same manner as traditional LCS, XCS is a
problem-independent and adaptive machine learning
model. As shown in Figure 2, XCS has four
components: a finite classifier population, a
performance component, a reinforcement component,
and a rule discovery component. Stored classifiers
control the system via a horizontal competition
mechanism and perform tasks by means of vertical
cooperation. The performance component governs
interactions with the target problem. The input
interface (detector) is used to transmit the current
target problem state to the performance component
and to determine dominant classifiers according to an
exploration/exploitation criterion. Through the
output interface (effector), any action advocated by
dominant classifiers is executed and receives
feedback. The reinforcement component (credit
assignment component) uses an algorithm similar to
Q-learning [8] to update the reinforcement
parameters of classifiers that advocated the output
action. Finally, the rule discovery component uses a
GA to search for better or more general classifiers
and to discard incorrect or more specific classifiers.
 When running XCS, performance metrics are used
to observe system performance and to express
classifier populations. Kovacs [11] divided these
performance metrics into two categories:

performance measures and population state measures.
Three well-known on-line metrics for measuring
performance in research environments and
real-world XCS applications are performance ρ,
system error, and population size. Performance ρ and
system error are used to measure XCS learning
capability according to results from target problem
interactions. As one would expect, the population
size performance metric (defined as the number of
macro-classifiers in a classifier population) belongs
to the category of population state measures. It is
used to measure XCS learning quality.

Figure 2. XCS architecture.

3 Co-Adaptive XCS (CA-XCS)
Our decision to use one XCS to adjust the parameters
of other XCS system was based on its ability to deal
with complex problems, especially its ability to
represent various parameter control strategies [3, 6,
7]. We used XCS to capture relationships and
changing parameter patterns between parameter
control strategies and to observe their effects on
target problem. Its principal features include a) the
combined advantages of adaptive and self-adaptive
parameter control approaches that allow for the use
of a coevolution model to simultaneously solve a
target problem and parameter setting problem, and b)
reduced time requirements for becoming efficient via
a latent learning process that uses small pieces of
information about performance metrics in the early
stages of a run.

3.1 The Model
A schematic of the co-adaptive XCS (CA-XCS)
architecture is shown in Figure 3. Its four principal
components are main-XCS, meta-XCS, performance
metrics, and parameters. Similar to the basic XCS,
the main-XCS component is responsible for
interacting with and solving the target problem. The

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp173-178)

meta-XCS integrates Dyna architecture with XCSµ
[4], which is especially useful in stochastic
environments where the results of actions are
affected by uncertainty. The meta-XCS component
learns parameter control and adjustment strategies
very quickly. The performance metrics component is
responsible for collecting, recording, and evaluating
the main-XCS component. The parameter component
stores all parameters that need adjustment by the
meta-XCS component and assigns updated
parameters to the main-XCS component.

Figure 3. CA-XCS architecture detail.

3.2 Meta-XCS Component
After running the main-XCS component for n trials
(e.g., n = 50 in 6-MP), assuming a current discrete
time step of t, the meta-XCS component receives an
input message (st) ← (Πt, ρ, εsys, σpop) transmitted by
the parameter and performance metrics components.
In addition to the current parameter settings Πt
affecting the main-XCS component, message st also
contains measures of the main-XCS component’s
performance ρ, εsys, and population states σpop. Based
on the information in st, the XCSµ in the meta-XCS
component determines an appropriate parameter

control action at and instructs the parameter
component to update the corresponding parameter pi
in parameter setting Πt. Next, the meta-XCS
component receives a st+1 message and rt+1 feedback
in the form of a reward or penalty from the
performance-metrics component. The meta-XCS
component uses rt+1 for reinforcing learning and for
storing the (st, at, st+1, rt+1) information within the
Dyna architecture. During intervals between
parameter control actions, the meta-XCS component
uses these records for latent learning. The cycle
continues until the target problem is solved by the
main-XCS component or a user-requested stop
criterion is met.

3.3 Meta-XCS Dyna
As shown in Figure 4, Dyna uses the XCSµ
exploration interface to perform latent learning, and
the parameter control operation is executed through
the XCSµ exploitation interface. Theoretically, the
latent learning and practical parameter control
operations of meta-XCS can be processed
simultaneously, but in practice, a higher priority is
assigned to the parameter control operation in the
meta-XCS component in order to decrease potential
conflicts and to meet the hardware restrictions of
sequential processing. Therefore, latent learning is
delayed until parameter control operations are fully
executed. However, we believe that the arrangement
takes advantage of system idling time to improve
parameter control and learning performance.

Figure 4. Dyna-XCS architecture.

4 Experiments
In LCSs, the mutation operator plays an important
role in learning performance and target problem
solution quality. During the early stages of a run, the
mutation operator provides novelty by moving

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp173-178)

classifiers within the search space. A faster mutation
rate helps speed up the rule discovery component. As
an essential background operator during the later
stages, mutation ensures some probability of finding
a better solution. A slower mutation rate helps
fine-tune existing classifiers without disturbing runs
or decreasing learning performance. However, it is
difficult to predetermine the optimal mutation rate for
a given target problem or to dynamically adjust the
mutation rate during every stage of a run.

4.1 6-bit Multiplexer Problems (6-MP)
Given the restrictions just described, we
experimented with a co-adaptive parameter control
approach in the form of the 6-bit multiplexer problem
(6-MP)—a version of the well-known benchmark
single-step problem for machine learning in general
and LCSs in particular [9]. As shown in Figure 5, the
input message signal transmitted to LCSs consists of
a string of six binary digits in which the first (version
A) or last (version B) two bits (called address bits)
represent a binary index and the remaining bits
represent data bits. The expected outcome is the
value of the indexed data bit. For example, the
expected outcome of “111110” in version A is 0,
since the first two bits (11) represent index 3—the
fourth bit following the address. The expected
outcome of “010001” in version B is 1, since the
second bit preceding the address is indexed.

Figure 5. The 6-bit Multiplexer Problem (6-MP)

 6-MP is considered challenging because of its
non-linear characteristic, yet it yields many useful
generalizations that help in comparing learning
performance in various models. During each cycle,
the 6-MP produces signals by randomly setting all six
bits. Expected outcomes are computed as single bits
from the generated signals, which are transmitted as
input messages to the LCS on request and returned as
output actions that are compared with expected
outcomes. A positive feedback score of 1,000 means
that a reward was returned to the LCS for
reinforcement; a feedback score of 0 means that a
penalty was returned. During the run, the 6-MP
continues to produce 6-bit messages with similar

probabilities as the LCS tries to learn the correct
mapping relations between signals and expected
outcomes—thus developing an optimal solution.
 With the exception of the mutation rate, the
default parameter for our experiments was N = 800, β
= 0.2, α = 0.1, ε0 = 10, ν = 5, θGA = 25, χ = 0.8, θdel =
20, δ = 0.1, θsub = 20, P# = 0.33, pI = 10, εI = 0, FI =
0.01, pexplore = 0.5, doGAsubsumption = true,
doActionSetSubsumption = true. All results discussed
in this report represent an average of 30 runs. XCS
performance metrics were recorded for each trial and
computed as average moving window numbers in the
last 50 trials.

4.2 Stationary Problem Experiment
In the first experiment we used the 6-MP to examine
whether the meta-XCS component of CA-XCS could
adjust the main-XCS component mutation rate. We
used three original XCS (one each with fixed
mutation rates of 0.01, 0.05, and 0.09) in the
stationary problems to determine whether CA-XCS
performance and learning quality was the best among
all XCS version.
 Performance metrics data from CA-XCS and
three comparative XCS at fixed mutation rate of 0.01,
0.05, and 0.09 in the stationary 6-MP experiment are
shown in Figure 6. When the XCS mutation rate =
0.09, the population metric was usually the worst and
the performance ρ metric the best among the three
XCS versions; furthermore, the system error metric
decreased very quickly. When the XCS mutation rate
= 0.01, performance ρ was the worst metric, the
system error metric decreased very slowly, and the
population size metric was the smallest among the
three XCS versions; furthermore, the number of
classifiers was nearly half that of the XCS at the fixed
mutation rate of 0.09.

Figure 6. Data for CA-XCS performance ρ, system error,
and population size performance metrics for the stationary
6-MP problem (version A) and other XCS versions with

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp173-178)

fixed mutation rates of 0.01, 0.05, and 0.09.

 When the CA-XCS was applied to 6-MP learning,
the performance and learning quality dilemmas were
easily avoided. As shown in Figure 6, it took between
850 and 900 trials for CA-XCS to completely learn
correct mapping relationships between the 6-MP
input messages and expected outcomes. For the
population size metric, the CA-XCS matched or
outperformed the XCS at a fixed mutation rate of
0.01—that is, after 10,000 trials, approximately 21
classifiers were available for forming an optimal
solution.
 Results from average mutation rate adaptation
processes for CA-XCS in the stationary 6-MP
(version A) are shown in Figure 7. The results
support those from previous studies on EC mutation
rates. During early run trials, the meta-XCS
component tended to increase the mutation rate in the
main-XCS component in order to produce classifiers
capable of learning correct mapping relationships
between 6-MP input messages and expected
outcomes at maximum speed. In the later trials, it
tended to decrease the mutation rate in order to
fine-tune existing classifiers and to obtain an optimal
solution.

Figure 7. Variation in CA-XCS mutation rate adaptation
process for the stationary 6-MP problem (version A).

 As shown in Figure 7, a constant high-to-low
oscillation was observed in the mutation rate of the
main-XCS component. It appears as though the
meta-XCS component of CA-XCS tested the
influence of a lower mutation rate on the main-XCS
component during early run trials and tested the
influence of a higher mutation rate on the main-XCS
component during later trials. Mutation rates were
abandoned if they exerted negative impacts on
performance and learning quality. In these cases, the
meta-XCS component returned to the opposite end of
the mutation rate range and rapidly mastered a link

among the mutation rate, performance ρ metric,
population size metric, and similar situations via a
latent learning mechanism.

4.3 Non-Stationary Problem Experiment
Our second experiment was similar to the first except
that the second made use of 6-MP versions A and B
(Figs. 8 and 9). For this experiment we ran 20,000
trials—10,000 that were similar to the first
experiment and 10,000 in which the input signal bit
sequence was abruptly changed from version A to B.
In the version B run, the two address lines were
moved from the initial (b0b1) to final input signal bit
(b4b5) position. Whenever the bit sequence
underwent a sudden change during the second 10,000
trials, the CA-XCS had to re-generalize the existing
classifiers and rebuild an appropriate solution. The
goal was to determine whether or not the CA-XCS
could quickly reestablish a proper mutation rate
following an abrupt change in the problem
environment, recover the original learning
performance and population size state, and still
rebuild an optimal solution.

Figure 8. Performance ρ, system error, and population
size performance metrics of CA-XCS and other XCS
versions with fixed mutation rates of 0.01, 0.05, and 0.09
for the non-stationary 6-MP problem (versions A and B).

 Details of CA-XCS performance are presented in
Figure 8. Regardless of the performance metric, the
system outperformed XCS at the fixed mutation rates
of 0.01, 0.05, or 0.09. At a fixed mutation rate of 0.09,
the performance ρ and system error metrics for the
CA-XCS outperformed those from the XCS. At a
fixed mutation rate of 0.01, the population size metric
for the CA-XCS was similar to that from the XCS.
An optimal solution aimed at the 6-MP version B was
rebuilt after 20,000 trials.
 Figure 9 has two mutation rate peaks, the first
before 2,500 trials and the second between 10,000

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp173-178)

and 12,400 trials. Each peak reflects the time
required by the CA-XCS to learn from the beginning.
According to these experimental results, the
CA_XCS is capable of handling non-stationary
problems at a high performance level.

Figure 9. Mutation rate adaptation for the CA-XCS in the
non-stationary 6-MP (versions A and B).

5 Conclusions
Previous studies of ECs and LCSs describe the search
for robust or optimal parameter sets for target
problem solutions as a time-intensive trial-and-error
task requiring large amounts of computation
resources. Different parameter values are essential
for inducing an optimal balance between exploration
and exploitation at different run stages. In response to
the common problem of setting parameters for
practical applications, we extended the original LCS
with a parameter control approach in order to
enhance performance and learning stability.
 Our proposal for a co-adaptive approach to LCS
parameters is based on a coevolution process and a
Dyna architecture. The approach takes advantage of
the on-line learning capabilities of LCSs; solutions
produced in this manner cover entire target problems.
Results from our experiments show that the
co-adaptive approach was successful in terms of
setting parameters according to target problem
properties. In both stationary and non-stationary
problem experiments, the system outperformed the
models it was tested against.

Acknowledgement:
This work was supported in part by National Science
Council, Taiwan, Republic of China under grant NSC
92-2524-S-009-004 and NSC 93-2520-S-009-003.

References:
[1] Eiben, A.E., Hinterding, R., Michalewicz, Z.:

Parameter Control in Evolutionary Algorithms.

IEEE Transactions on Evolutionary
Computation, Vol. 3, No. 2 (1999) 124-141.

[2] Holland, J.H.: Adaptation in Natural and
Artificial Systems. MIT Press (1992);
University of Michigan Press, Ann Arbor
(1975)

[3] Holmes, J.H., Lanzi, P.L., Stolzmann, W.,
Wilson, S.W.: Learning Classifier Systems:
New Models, Successful Applications.
Information Processing Letters, Vol. 82 (2002)
23-30.

[4] Lanzi, P.L., Colombetti, M.: An Extension to
the XCS Classifier System for Stochastic
Environments. In: Banzhaf, W., Daida, J.,
Eiben, A.E., Garzon, M.H., Honavar, V.,
Jakiela, M., Smith, R.E. (eds.) Proceedings of
the Genetic and Evolutionary Computation
Conference (GECCO’99). Morgan Kaufmann
(1999) 353-360.

[5] Lanzi, P.L.: An Analysis of Generalization in
the XCS Classifier System. Evolutionary
Computation, Vol. 7, No. 2 (1999) 125-149.

[6] Lanzi, P.L.: Extending the Representation of
Classifier Conditions Part I: From Binary to
Messy Coding. In: Banzhaf, W., Daida, J.,
Eiben, A.E., Garzon, M.H., Honavar, V.,
Jakiela, M., Smith, R.E. (eds.) Proceedings of
the Genetic and Evolutionary Computation
Conference (GECCO’99). Morgan Kaufmann
(1999) 337-344.

[7] Lanzi, P.L.: Extending the Representation of
Classifier Conditions Part II: From Messy
Coding to S-Expressions. In: Banzhaf, W.,
Daida, J., Eiben, A.E., Garzon, M.H., Honavar,
V., Jakiela, M., Smith, R.E. (eds.) Proceedings
of the Genetic and Evolutionary Computation
Conference (GECCO’99). Morgan Kaufmann
(1999) 345-352.

[8] Sutton, R.S., Barto, A.G.: Reinforcement
Learning: An Introduction. MIT Press (1998).

[9] Wilson, S.W.: Classifier Fitness Based on
Accuracy. Evolutionary Computation, Vol. 3,
No. 2 (1995) 149-175.

[10] Wilson, S.W.: Generalization in the XCS
Classifier System. In: Koza, J.R., Banzhaf, W.,
Chellapilla, K., Deb, K., Dorigo, M., Fogel,
D.B., Garzon, M.H., Goldberg, D.E., Iba, H.,
Riolo, R.L. (eds.): Genetic Programming 1998:
Proceedings of the Third Annual Conference
San Francisco. Morgan Kaufmann (1998)
665-674

[11] Kovacs, T.: What Should a Classifier System
Learn and How Should We Measure It?
Journal of Soft Computing, Vol. 6, Nos. 3-4
(2002) 171-182.

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp173-178)

