
Computational intelligence agent-oriented modelling

Roman Neruda
Institute of Computer Science

Academy of Sciences of the Czech Republic
P.O.Box 5, 18207 Prague, Czech Republic

Abstract: In this paper a multi agent platform targeted towards the area of computational intelligence modeling is
presented. We show the design of various computational agents and multi agent systems, as well as the infrastruc-
ture capabilities. The focus of the system is the interchangeability of computational components, their autonomous
behavior, and emergence of new models. It is demonstrated that such a system is able to assist in building artificial
intelligence models based on data in a distributed environment.

Key–Words:Multi-agent systems, Adaptive Agents, Computational Intelligence.

1 Introduction

Hybrid models, including combinations of artificial
intelligence methods such as neural networks, genetic
algorithms and fuzzy logic controllers, seem to be a
promising and extensively studied research area [4].
We have designed a distributed multi-agent system [9]
called Bang 3 that provides a support for an easy cre-
ation of hybrid AI models by means of autonomous
software agents [6].

The use of distributed Multi-Agent Systems
(MAS) instead of monolithic programs has become a
popular topic both in research and application devel-
opment. Autonomous agents are small self-contained
programs that can solve simple problems in a well-
defined domain [7]. In order to solve complex prob-
lems, agents have to collaborate, forming Multi-Agent
Systems (MAS). A key issue in MAS research is how
to generate MAS configurations that solve a given
problem [5]. In most systems, an intelligent (human)
user is required to set up the system configuration.
Developing algorithms for automatic configuration of
Multi-Agent Systems is a major challenge for AI re-
search.

Besides serving as an experimental tool and a
distributed computational environment, this system
should also allow to create new agent classes consist-
ing of several cooperating agents. TheMAS scheme
is a concept for describing the relations within such a
set of agents. The basic motivation for schemes is to
describe various computational methods. It should be
easy to ‘connect’ a particular computational method
(implemented as an agent) into hybrid methods, using
schemes description. The scheme description should
be strong enough to describe all the necessary rela-

tions within a set of agents that need to communicate
one with another in a general manner.

In the following we describe the main features of
our system, mainly implementation and logical de-
scriptions of computational agents, mechanisms for
verifying and proposing MAS schemes, and the de-
cision support architecture for computational agents.
The combination of these features is unique and
makesBanga valuable prototyping tool for compu-
tational intelligence modeling.

2 Computational Agents
Here we show, how two computational intelligence
methods — artificial neural network of the RBF
type, and a genetic algorithm — are represented by
a MAS. This further serves for more complicated
MAS schemes containing representing hybrid compu-
tational intelligence models.

Genetics

Fitness Operators

TunerSelection

Shaper

Chromosom independent

Chromosom dependent

Required blocks

Optional blocks

Figure 1: Genetic Algorithm as a multi-agent system.

The genetic algorithm itself, from this point of
view, consists of several parts: theGeneticsagent,
which performs the basic genetic algorithm logic and
glues all parts together, theFitnessagent, that evalu-
ates the fitness function for each individual, theOp-

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp238-241)



eratorsagent, that provides genetic operators, metrics
operators, and creation operators, theSelectionagent,
that provides the selection of individuals. There are
also two optional agent types that can further opti-
mize overall performance: theShaperagent, that pro-
vides global processing of population individuals fit-
ness function values — such as sigma scaling — and
theTuneragent, that by exploiting information about
the genetic algorithm performance (like best individ-
ual fitness, average fitness, first and second deriva-
tives of these etc) tunes genetic operators probabilities
(cf. Fig 1). It is supposed that there will exist more
rival agents implementing a particular function (such
as fitness evaluating) and it will be possible to choose
among them.

GA

VQGA

RBF

Training set

GRAD

Least Squares Solver
VQ + GRAD + LS

Figure 2: Radial Basis Function Network as a multi-
agent system.

Similar situation is with the Radial Basis Func-
tion neural network, which is realized as a MAS con-
taining the centralRBF agent which cooperates with
several other agents realizing training subtasks for it
(cf. Fig 2). Namely, it is theVector quantization,
Gradient learning, and Least Square Solver, or the
above mentionedGA. Again, it is possible that sev-
eral competing agents realize a particular function for
the RBF agent (we have several VQ agents based on
Kolmogorov network and k-means clustering, e.g.).

3 Agents and MAS

Bangagents communicate via messages and triggers.
Messages are XML documents send by an agent to
another agent. A triggers are XML patterns with an
associated function. When an agent receives a mes-
sage matching the XML pattern of one of its triggers,
the associated function is executed. In order to iden-
tify the receiver of a message, the sending agent needs
the message itself and a link to the receiving agent. A
conversation between two agents usually consists of a
number of messages. For example, when a neural net-
work agent requests training data from a data source
agent, it may send the following messages: Open the
data source located at XYZ; Randomize the order of
the data items; Set the cursor to the first item; Send

next item.
Multi-Agent Systems are assembles of agents

(for now, only static aspects of agents are modeled).
Therefore, a Multi-Agent System can be described by
three elements: The set of agents in the MAS, the
connections between these agents, and the character-
istics of the MAS. The characteristics (constraints)
of the MAS are the starting point of logical reason-
ing: In MAS checkingthe logical reasoner deduces if
the MAS fulfills the constraints. InMAS generation,
it creates a MAS that fulfills the constraints, starting
with a partial MAS.

Figure 3 shows an example of the most simple
computational MAS inBang which consists only of
the computational agent, data and a task manager
(which can be a user interacting via GUI, or more
complicated agent performing series of experiments
over a cluster of workstations). A more typical com-
putational MAS configuration is shown on figure 3,
where two more complicated computational agents —
an RBF network and an Evolutionary algorithm coop-
erating with each other — together with several sim-
pler agents to solve a given task.

Multilayer 
perceptron Data Source

Manager
Comp. Task

Figure 3: Example of a small computational MAS
consisting of a Task Manager agent, Data Source
agent, and a computational agent (Multilayer Percep-
tron).

4 Autonomous Behavior Support
In order to act autonomously, an agent should be able
to cope with three different kind of problems [8]: co-
operation of agents, a computation processing sup-
port, and an optimization of the partner choice.

Cooperation of agents: An intelligent agent
should be able to answer the questions about its will-
ingness to participate with particular agent or on a
particular task. The following subproblems follow:
(1) deciding whether two agents are able to cooper-
ate, (2) evaluating the agents (according to reliability,
speed, availability, etc.), (3) reasoning about its own
state of affairs (state of an agent, load, etc.), (4) rea-
soning about tasks (identification of a task, distin-
guishing task types, etc.).

Computations processing:The agent should be
able to recognize what it can solve and whether it is

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp238-241)



Data Source

Manager
Comp. Task

RBF Network 

Quantization

Pseudoinverse

Evolutionary

TunerShaper

Fitness

Vector

Matrix

Alg. Core Chromozome

Gradient
Learning

Figure 4: Example of a more complicated computa-
tional MAS consisting of a Task Manager agent, Data
Source agent, and a suite of cooperating computa-
tional agents (an RBF network agent and Evolutionary
agent with necessary additional agents).

good at it, to decide whether it should persist in the
started task, and whether it should wait for the result
of task assigned to another agent. This implies the
following new subproblems: (1) learning (remember-
ing) tasks the agent has computed in the past (we use
the principles of case-based learning and reasoning —
see [2], [1] — to remember task cases), (2) monitoring
and evaluation of task parameters (duration, progress,
count, etc.), (3) evaluating tasks according to different
criteria (duration, error, etc.).

Optimization of the partner choice:An intelligent
agent should be able to distinguish good partners from
unsuitable ones. The resulting subproblems follow:
(1) recognizing a suitable (admissible) partner for a
particular task, (2) increasing the quality of an evalu-
ation with growing experience.

So, the architecture must supportreasoning, de-
scriptionsof agents and tasks (we use ontologies in
descriptions logics - see, e.g., [3]),monitoring and
evaluationof various parameters, andlearning.

The architecture is organized into layers. Its logic
is similar to the vertically-layered architecture with
one-pass control (see [10, p. 36]). The lowest layer
takes perceptual inputs from the environment, while
the topmost layer is responsible for the execution of
actions.

The architecture consists of four layers (see Fig-
ure 5): themonitors layer, theevaluators modeling
layer, the layer fordecision support, and thebehavior
generationlayer. All layers are influenced by global
preferences.

Global preferencesallow us to model different
flavors of an agent’s behavior, namely, we can set
an agent’s pro-activity regime, its cooperation regime

a

. . .

b

c

Concept
node

messages

Monitor

control

filters
message

control

preferences

co
nt

ro
l

in
fo

rm
at

io
n

information

information

preferences

Decision support

Evaluators

Monitors

Behavior generation

perceptual input

action output

P
references

Figure 5: Architecture — network of concepts (a);
Concept node (b); Monitor (c)

and its approach to reconsideration.The monitors
layer interfaces directly with the environment. It
works in a purely reactive way. It consists of rules
of the formcondition −→ action. Evaluators mod-
eling layer is used to model more aggregate concepts
on top of already defined concepts (either monitors or
other evaluators).Decision support layerenables an
agent to solve concrete problems.Behavior genera-
tion layergenerates appropriate actions that the agent
should perform, and thus controls the agent’s behav-
ior. The mechanisms for action generation and selec-
tion are provided by the BDI model (see [10, pages
55–61]).

5 Experiments
We have adapted two existing computational agents
embedding the multi-layer perceptron (MLP) and the
radial basis function (RBF) neural network. These
agents represent two different computational methods
for the solution of similar categories of tasks.

Overheads of the architectureare summarized in
Table 1. The creation of the agent takes 2-3 times
longer since all the structures must be initialized. The
communication overhead is around 30% when dealing
with message delivering. However, in real-life sce-
nario of task solving, the overhead is only about 10%.

Without the arch. With the arch.

Agent creation time 3604µs 9890µs

Message delivery time 2056µs 2672µs

Total computation time 8994681 µs 9820032 µs

Table 1: Comparison of the agent with and without
the autonomous support architecture

Table 2 summarizes the measured results ofopti-

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp238-241)



Error Duration

Random choice 11.70 208710ms

Best speed 1.35 123259ms

Best Accuracy 1.08 274482ms

Best services 1.17 102247ms

Table 2: Optimization of the partner choice. Compar-
ison of choices made by different criteria.

Repeated

tasks

Standard Optimized

0 % 135777097 121712748

20% 94151838 90964553

40% 50704363 91406591

60% 47682940 90804052

Table 3: Optimization by reusing the results of
previously-computed tasks (duration in milliseconds).

mization of the partner choice. We simulated a usual
scenario when an agent needs to assign some tasks to
one of admissible partners. This agent uses a collec-
tion of different tasks and assigns them to the compu-
tational agents successively. The total duration of the
computation and the average error of computed tasks
were measured. A significant improvement of the ef-
ficiency can be seen.

Experiments withoptimization by reusing results
are summarized in Table 3. We have constructed sev-
eral collections of tasks with different ratios of re-
peated tasks (quite a usual situation when, e.g., evalu-
ating the population in genetic algorithms). We com-
pared the total computation-times of the whole collec-
tion with and without the optimization enabled. We
can see that the optimization is advantageous when
the ratio of repeated tasks is higher than 20%. When
more than 40% are repeated the results are significant.

6 Conclusions and Future Work

We have demonstrated thatBang is able to help both
scientists and end-users with data analysis tasks. The
niche for this software has been prototype building
and testing various hybrid models so far. However, it
is possible to employ it for large scale distributed com-
putations running on a cluster of workstations. The
nature of evolution of MAS schemes has brought sev-
eral issues that are currently being solved. The re-
sulting hybrid search for MAS solution to a particular
problem represented by data should be not only auto-

matic, but also feasible in terms of computational time
and resources consumption.

Acknowledgement

This work was supported by the Ministry of Education
of the Czech Republic under the project Center of Ap-
plied Cybernetics No. 1M684077004 (1M0567).

References:

[1] Agnar Aamodt and Enric Plaza. Case-based
reasoning : Foundational issues, method-
ological variations, and system approaches.
AICom — Artificial Intelligence Communica-
tions, 7(1):39–59, 1994.

[2] David W. Aha and Dietrich Wettschereck. Case-
based learning: Beyond classification of feature
vectors. 1997.

[3] Franz Baader, Diego Calvanese, Deborah
McGuinness, Daniele Nardi, and Peter Patel-
Schneider, editors.The Description Logic Hand-
book. Cambridge University Press, 2003.

[4] P. Bonissone. Soft computing: the convergence
of emerging reasoning technologies.Soft Com-
puting, 1:6–18, 1997.

[5] J. E. Doran, S. Franklin, N. R. Jennings, and T. J.
Norman. On cooperation in multi-agent systems.
The Knowledge Engineering Review, 12(3):309–
314, 1997.

[6] S. Franklin and A. Graesser. “Is it an agent, or
just a program?”: A taxonomy for autonomous
agents. InIntelligent Agents III, pages 21–35.
Springer-Verlag, 1997.

[7] H. S. Nwana. Software agents: An overview.
Knowledge Engineering Review, 11(2):205–
244, 1995.

[8] Roman Vaculin and Roman Neruda. Concept
nodes architecture within the Bang3 system.
Technical report, Institute of Computer Science,
Academy of Science of the Czech Republic,
2004.

[9] G. Weiss, editor.Multiagent Systems. The MIT
Press, 1999.

[10] Gerhard Weiss, editor.Multiagents Systems. The
MIT Press, 1999.

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp238-241)


