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Abstract:Usage of genetic algorithms in the Information retrieval area, especially in optimizing a Boolean query,
is presented in this paper. The proposed evolution of Boolean queries should increase the performance of the
information retrieval system by means of the precision and recall. Influence of both criteria is thorougly tested for
different genetic algorithm settings. The quality improvement achieved by our approach is discussed.
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1 Introduction
Retrieving information employs matching the words
in the query against the database index (key-word
searching) and traversing the database with the aid
of hypertext or hypermedia links. Key-word searches
can be made either more general or narrower in scope
of the means of logical operators (e.g., disjunction and
conjunction).

Key-word searching has been the dominant ap-
proach to text retrieval since the early 1960s; hyper-
text has so far been confined largely to personal or cor-
porate information-retrieval applications. Evolving
information-retrieval techniques, exemplified by de-
velopments with modern Internet search engines spe-
cially on optimizing Boolean queries. Artificial intel-
ligence was used on such techniques that seek higher
levels of retrieval precision.

The principal categories of information sources
useful in modern information retrieval systems are
text, video, and voice. Information filtering is con-
cerned with finding information from unstable collec-
tions of documents such as the Internet, so in such a
huge and unstable information collection, todays the
greatest problem is to find relevant information for
the user query. In the information filtering domain,
the user query does not consists of a list of words
or terms to search for but rather of combinations of
words. The most important problem to solve is to op-
timize the user query and to obtain accurate collection
statistics for calculating the term arity.

An information retrieval system is basically con-
stituted of three main components: documentary
database, query subsystem and matching or evaluation
mechanism [1, 14].

For evaluation of the information retrieval system,

measured by effectiveness, two statistics are used, pre-
cision and recall where these measures are evaluated
over a set of documents called a collection of docu-
ments. All documents in this collection are divided
into four subsets depending on user query: (1) Rele-
vant setR1 ” the set of documents that are relevant to
the user query”, (2) Retrieved setR2 ” the set of doc-
uments that are returned to the user”, (3) Relevant-
Retrieved setR3 ” the set of documents that are re-
trieved and relevant to the user query”, (4) and the
rest setR4 of documents ”the set of documents that
are not relevant and not retrieved”. The quality of in-
formation retrieval is measured in terms of the follow-
ing measures. The precision measureP is calculated
as a ratio of the retrieved documents to the ones that
are relevant to the user query, and the recall measure
is calculated as a ratio of the relevant documents to
the ones that are retrieved to the user query [1, 14, 7]
Recall = R3

R1
, Precision = R3

R2
.

2 Evolutionary Algorithms
Evolutionary algorithms are stochastic search meth-
ods that mimic the metaphor of natural biological evo-
lution, which applies the principles of evolution found
in nature to the problem of finding an optimal solution
to a solver problem.

An evolutionary algorithm is a generic term used
to indicate any population-based optimization algo-
rithm that uses set of operators or mechanisms in-
spired by biological evolution, such as reproduction,
mutation and recombination. Candidate solutions to
the optimization problem play the role of individu-
als in a population, and the cost function determines
the environment within which the solutions ”live” [6].
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Evolution of the population then takes place after the
repeated application of the above operators. Genetic
algorithm is the most popular type of evolutionary al-
gorithms [8, 9].

Most of the search engines in the internet depend
on the user query and operate an information retrieval
system to get the response of the user query request.
Where the user query consists of a set of terms and
set of logical operators; especiallyand, or, of, and
not operator see [7]. The motivation of our work is to
do an evolution of the Boolean queries using genetic
programming in the information retrieval [2, 3, 16].

This section will present implementation of infor-
mation retrieval using genetic algorithms (for SQL we
can see [17, 13, 10, 4]). The GA is generally used to
solve optimization problems [8, 11]; it starts on an
initial population with a fixed size of chromosomes
“P-chromosomes”. Each individual is coded accord-
ing to the chromosome length, where genes are al-
located in each position in a chromosome with dif-
ferent data types, and each gene values called allele.
In information retrieval, the queries for relevant doc-
uments represented each individual or chromosome,
and all document described by a set of terms. De-
scriptiondi for documentDi, wherei = 1 . . . l, the
set of terms forDi is Tj , where j = 1 . . . n, so
di = (w1i

, w2i
, . . . , wni

). The value for each term
will be 1 if this term exists in the document or 0 if
not (Note: another weight for terms was mentioned
in the paper [15]), it indicates that the indexing func-
tion, which is maps, a given index termt and a given
documentd is F : D × T → [0, 1].

Defining a query will be a combination of a set of
terms and a set of Boolean operatorsand, or, xor, not
andof. The query setQ defined as a set of queries for
documents, defines the query processing mechanism
by which documents can be evaluated in terms of their
relevance to a given query [12].

In this work, we develop a genetic program for
implementing GA with variable length of chromo-
somes and mixture symbolic of information, like real
values and Boolean queries values.

Each chromosome from the initial population rep-
resented a tree structure for one query; an index was
defined for each node in the tree. Genetic operators
were applied to individuals. Queries will be encoded
as trees, where each chromosome contains a set of
genes, and each gene mentioned to be a node in a tree
and the value for each node known as allele. An ex-
ample that shows a query encoding for chromosome
in the population shown in Fig. 1.

Fig. 1 Chromosome encoding form a query.

Genetic operators has been used in our work to
evolve Boolean queries. Presented for these operators
are “Fitness, Selection, Crossover, and Mutation”.

For each individual the value of precision and re-
call will be computed and known as fitness values,
seeRecallF itness E1 and PrecisionFitness E2

respectively, which depends on the number of rele-
vance documentsrd in the collection of documents to
the user query, in the number of retrieved document
fd, andα and β being arbitrary weights. Whereα
andβ are added specially to precision fitness function
[12].

E1 =

∑
d[rd × fd]∑

d[rd]
,

E2 =
α

∑
d[rd × fd]∑

d[rd]
+

β
∑

d[rd × fd]∑
d[fd]

Very simple implementation is sufficient. Two in-
dividuals with the best fitness values are chosen from
a population, but if there are more than two individ-
uals with the same highest fitness values, then two of
them will be chosen randomly. The two selected chro-
mosomes will be called parent1 and parent2 and they
will be used for producing two new offsprings.

Offsprings must have some inheritance from the
tow parents; single point crossover will do that by ex-
change of the subtree from parent1 with the subtree
from parent2. Positions for exchanging subtree1 and
subtree2 will be selected randomly. In our work we
define the selection of the position for the subtree as
follows:

1. The root node of the tree.

2. Each Boolean operator node.

3. Each leaf from the tree.

An example was shown in Fig. 2.
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Fig. 2 Single point crossover, Randomly select the
nodes.

Mutation, random perturbation in the chromo-
some representation, should assure that the current
generation is connected to the entire search space, and
it is necessary to introduce new genetic material into a
population that has a stabilized level [12]. In our im-
plementation, the mutation operator works as the most
important operator for the evolutionary learning of the
Boolean query.

Each node from the new offsprings may be mu-
tated; that depends on the mutation value(0.2). And
we work with different types of mutation shown be-
low:

• Mutation on Boolean operator: randomly ex-
changing one operator to another but both must
be from the same arty, such as any exchange in
(and, Or, Xor, andof) are allowed.

• Mutation on term node or leaf node: changing
one term selected randomly from the offspring
by any other one but the other one will be one of:

– The terms in a given collection of docu-
ments

– The terms in an initial population.

– A specified list of terms.

– The terms appeared in the user’s query.

• Mutation by inserting or deleting the operator be-
tween two nodes in the offsprings

Where mutation was implemented in this way:
For a given offspring one node randomly is selected
and for this node there are two possibilities – to mutate
into another one or to apply inserting a unary operator
before it or delete it if and only if the unary operator
is of this node. Some examples were shown in Fig. 3.

Fig. 3 Single point crossover, Randomly selected
nodes.

3 Experiments
Presenting our work now, we will show the results
of our research on evolutionary learning of Boolean
queries was done.

We developed a genetic program to process some
experiments over a set of Boolean queries and vari-
ous collections of documents, and the documents are
various number of words; all collections used in our
experiments are described in Tab. I:

Collection Words Docs
10x30 30 10
200x50 200 50

5000x1000 1000 5000

Tab. I Document Collections

The Genetic program ended when a given number
of generations was reached or when all chromosomes
in the population had a maximum possible value of
the fitness function, where the maximum values for
precision and recall areα + β and 1, respectively. We
also used three types of mutation as described above.
All the experiments were done a few times with the
same options to see the differences in the results, be-
cause the results are affected by probability used dur-
ing the genetic program process. In all the experi-
ments the following fixed options were used: the ar-
bitrary weights forα = 0.25, andβ = 1.0, crossover
value = 0.8.

The mutation value is a probability of the apply-
ing mutation operator on an offspring. In this ex-
periment we observed how the change of the muta-
tion value affects the result of the genetic algorithm
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process. The type of mutation was described above.
Additional options for this experiment: user query
is: (w6 andw8) and notw10, collection name: 10x30,
used fitness measure: precision, 200 generations.

All terms from the initial population were used
for mutation of leaves and the results obtained as
shown in Tab. II:

Mutation Generations Precision Recall
0.1 200 0.75 1.00

51 1.25 1.00
0.2 24 1.25 1.00

40 1.25 1.00
0.3 27 1.25 1.00

17 1.25 1.00
0.4 25 1.25 1.00

118 1.25 1.00
0.5 45 1.25 1.00

135 1.25 1.00

Tab. II Results with Mutation applied over leaves
and terms from all initial population.

Nearly in all experiments, the values of the fitness
function for precision for all chromosomes reached in
the final population to be as maximum of the precision
value 1.25, and the same for the recall fitness value is
1.00, where the number of generations was variant.

All terms form the user query only used for muta-
tion of leaves, and the results were shown in Tab. III.

Mutation Generations Precision Recall
0.1 20 0.75 1.00

200 0.75 1.00
0.2 200 0.75 1.00

200 0.75 1.00
0.3 200 0.75 1.00

200 0.75 1.00
0.4 200 0.75 1.00

200 0.75 1.00
0.5 113 1.25 1.00

200 0.75 1.00

Tab. III Results with Mutation applied over leaves
and terms from the user query only.

In this case, nearly the maximum number of gen-
erations was reached to get the best solution especially
when the precision fitness function was used.

All terms forming the whole collection were used
for the mutation of leaves, and the results were shown
in Tab. IV. Where the maximum number of genera-
tions was reached in some experiments and the value
of precision was reached in an other maximum.

Mutation Generations Precision Recall
0.1 200 0.75 1.00

28 1.25 1.00
0.2 200 0.75 1.00

58 1.25 1.00
0.3 65 1.25 1.00

11 1.25 1.00
0.4 187 1.25 1.00

143 1.25 1.00
0.5 21 1.25 1.00

42 1.25 1.00

Tab. IV Results with Mutation applied over leaves
and terms from whole collection.

When we used recall as a fitness function, all
chromosomes in the final population had the same
(maximum) value of recall, but the values of preci-
sion are mostly various; and the best of them are de-
scribed in the tables bellow, where Tab. V shows the
results when the mutation over leaves used only terms
from the user’s query. Tab VI shows the results when
the mutation over leaves used terms from the initial
population and Tab. VII shows the results when the
mutation over leaves used terms from the whole pop-
ulation:

Mutation Generations Precision Recall
0.1 5 0.583 1.00

4 0.583 1.00
0.2 5 0.583 1.00

5 0.500 1.00
0.3 5 0.500 1.00

5 0.500 1.00
0.4 5 0.583 1.00

5 0.500 1.00
0.5 5 0.583 1.00

6 0.583 1.00

Tab. V Results with Mutation applied over leaves
and terms from the user’s query.

Mutation Generations Precision Recall
0.1 5 0.583 1.00

6 0.583 1.00
0.2 5 0.500 1.00

4 0.583 1.00
0.3 5 0.500 1.00

5 0.500 1.00
0.4 5 0.583 1.00

8 0.500 1.00
0.5 7 0.583 1.00

4 0.583 1.00
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Tab. VI Results with Mutation applied over leaves
and terms from initial population.

Mutation Generations Precision Recall
0.1 5 0.583 1.00

4 0.500 1.00
0.2 5 0.500 1.00

5 0.500 1.00
0.3 6 0.500 1.00

5 0.583 1.00
0.4 8 0.583 1.00

5 0.583 1.00
0.5 5 0.583 1.00

5 0.583 1.00

Tab. VII Results with Mutation applied over leaves
and terms from whole collection.

In some cases, especially when we used only
the terms from the user query for mutation over
leaves and the fitness function was precision, there
were worse results than in other cases as shown in
Tabs. IV, V, and VI. We increased the maximal num-
ber of generations to be 1200 generations and did
some experiments with the following options. The
results of these experiments are shown in Tab. VIII.
(maximum number of generations: 1200, user query:
((notw10) and(w6 andw8)), mutation over leaves
use terms from the user query, fitness function is pre-
cision).

Mutation Generations Precision Recall
0.1 1200 0.75 1.00

1200 0.75 1.00
0.2 1200 0.75 1.00

1200 0.75 1.00
0.3 1200 0.75 1.00

197 1.25 1.00
0.4 1200 0.75 1.00

462 1.25 1.00
0.5 25 1.25 1.00

1200 0.75 1.00

Tab. VIII Results with Mutation applied over leaves
and terms from the user query.

After increasing the number of generations there
was not a big difference in the results because in many
cases the best solution had not been reached yet.

The goal of the optimization process of a Boolean
query is to get a query with the highest possible val-
ues of precision and recall. The results shown above
demonstrate that when using precision as a fitness
function, the value of recall in the final generation is

very high, even when the precision value is not the
most possible. But to get these results we often needed
a high number of generations. We tested this process
over larger collections.

Experiment options: collection name: 200x50,
user query:((notw10) and(w6 andw8)), maximum
number of generations: 2000, all terms from the ini-
tial population were used for mutation over leaves.

When using precision as a fitness function we
reach the highest number of generations without
reaching the best value of precision as shown in
Tab. IX, and Tab. X shows the results when we used
the recall as a fitness function.

Mutation Generations Precision Recall
0.1 2000 0.3779 1.00

2000 0.3394 1.00
0.2 2000 0.3736 1.00

2000 1.045 0.18
0.3 2000 0.3736 1.00

2000 0.36 1.00
0.4 2000 0.3736 1.00

2000 0.3736 1.00
0.5 2000 0.3736 1.00

2000 0.4219 1.00

Tab. IX Results when Precision was used as a fitness
function.

Mutation Generations Precision Recall
0.1 16 0.3050 1.00

63 0.3050 1.00
0.2 13 0.3050 1.00

11 0.3050* 1.00
0.3 23 0.3050* 1.00

15 0.3050 1.00
0.4 11 0.3050* 1.00

16 0.3050 1.00
0.5 17 0.3050 1.00

10 0.3050* 1.00

Tab. X Results when Recall was used as a fitness
function.

∗ – in these cases the precision value of chromo-
somes in the final generation was various. The number
in the table is the lowest precision value in the popu-
lation.

4 Conclusions
In this paper, an optimization of the Boolean query
over a collection of documents is presented. We fo-
cused especially on mutation and on comparison of
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two fitness measures, precision and recall. Experi-
ments were done over various models of document
collections with different types of mutation over the
leaves.

After the set of experiments we have obtained the
following conclusions. First, when applying the mu-
tation operator on terms in a query, it is necessary to
have the largest possible set of terms at disposal for
mutation. If only terms from the user query or the
initial population were used for mutation, the results
were worse than when terms from the whole collec-
tion were used. Only then can new queries come into
existence, describing the same documents as the user
query, but the containing terms not included into the
user query or the initial population.

Second, when we are looking for the best opti-
mization of a Boolean query, we should consider the
number of operators in the queries in the final popu-
lation. The query with fewer operators is better than
a query with more operators and the same values of
precision and recall. This parameter can be important
during the whole genetic algorithms process.

Third, the probability of mutation (the mutation
value) affects the result of the genetic algorithm pro-
cess too. A higher mutation value causes higher prob-
ability of finding a good query, especially when using
precision as a fitness measure.

Fourth, recall seems to be more efficient than pre-
cision. Recall as a fitness function returns quickly
the expressions describing all documents relevant to
the user query, but there are many non-relevant doc-
uments retrieved too. Other sides, when using preci-
sion as a fitness measure, the results are (especially
for larger collections) similar but the number of gen-
erations needing to get these results is much bigger.
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