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Abstract: - Eddy Current Techniques (ECT) for Non-Destructive Testing and Evaluation (NDT/NDE) of conducting materials 
is one of the most application-oriented field of research within electromagnetics. In this work, a novel approach is proposed 
to classify defects in metallic plates in terms of their depth starting from a set of experimental measurements. The problem is 
solved by means of a system based on wavelets approach extracting information on the specimen under test from the 
measurements and, then, implementing Support Vector Machines in order to determine its depth. Finally, Confusion Matrices 
(CMs) operators have been taken into account to improve the procedure. 
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1   Introduction 
NDT in the field of defects identification in metallic 
elements plays a remarkable role with special regard to 
those sectors where the integrity of the material is strictly 
required. As a consequence, the detection of defects in 
metallic plates together with the relevant shape 
classification provides the operator useful information on 
the actual mechanical integrity of the specimen [1]. It 
should be considered that defects rarely look as well-
known geometrical shapes. At the state-of-the-art, non-
destructive identification systems allow to locate a defect 
but without being capable to determine its shape. In 
addition, different defects give rise to totally similar 
signals. This paper aims to deal with the classification of 
defects, both Inner (ID) (the probe lies on the same side of 
the plate where the defect is located) and Outer (OD) ones 
(probe and defect are on opposite sides of the plate), in 
terms of their depth introducing an approach based on 
Support Vector Machines (SVMs) obtaining separation 
hyper-planes among data belonging to different classes. A 
previously proposed pre-processing based on Wavelet 
Transforms (WTs) is exploited to extract features related to 
the local trend of the signal. In this way, a device ables to 
classify defects into two macro-classes have been carried 
out. In order to refine the procedure, Confusion Matrix 
which evaluates the goodness of a trained classifier, has 
been taken into account. The conventional approaches to 
classification which assign a specific class for each defect 
are often inadequate because each defect may embrace 
more than a single class. Support Vector theory can 
provide a more appropriate solution to this problem. The 
paper is organized as follows: Section 2 reports the 
characteristics of the experimental database; Section 3 
describes the theory of SVMs and the implementation 
procedure of our SVM-based classifier; Section 4 shows 
the WT approach for data pre-processing; in Section 5 the 

classification results are discussed and, finally, in Section 6 
some conclusions are drawn. 
 
 
2   The Building of Experimental Database 
Experimental measurements have been carried out at Non 
Destructive Testing Lab, DIMET Department, University 
“Mediterranea” of Reggio Calabria, on a INCONEL 600 
specimen (Fig. 1) from JSAEM (Japan Society of Applied 
Electromagnetics and Mechanics).  
 

Fig. 1 - JSAEM sample (140 mm x 140 mm x 1.25 mm 
INCONEL 600 plate with four artificial cuts) 

 
 
     It’s a plate 140 x 140 x 1.25 mm with four artificial 
(EDM) 0.2 x 5 mm rectangular cuts having depths of 20%, 
40%, 60% and 100% respectively of the plate thickness. 
The applied sensor was a FLUXSET®-type probe [2], 
moved over the specimen by means of a 0.5 mm-step 
automatic scanning procedure along x and y axes. A 70 x 70 
mm central portion of the specimen was investigated this 
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way. A driving signal - triangular shape, 125 kHz 
frequency, 2Vpp amplitude - was applied to saturate the 
core material inside the probe. An external sinusoidal 
exciting field at a frequency of 1 kHz and a current of 107 
mArms was generated close to the specimen, thus inducing 
eddy currents on the surface as well as on subsurface layers 
(Fig. 2).    The output pick-up voltage is proportional to the 
radial component of the induced magnetic field; in the 
experimental arrangement this component coincides with 
the component parallel to the longitudinal axis of the sensor 
itself, that is x axis. 48 full scannings were run and the 
following 8 outputs were selected (inputs of SVM 
procedure): the module of the voltage (peak value |Vpeak|, 
[mV]); the current applied by the signal generator |igen|, 
[mA]; the frequency of the sinusoidal signal fsignal, [kHz]; 
the five Wavelet Detail Coefficients (WDCs) concerning 
the region where a crack is found. Because the depth 
measured by the probe does not change during the scan of 
each defect (just the y position of the probe increases in 0.5 
mm steps), the first two classes have been grouped to make 
a single class, and in the same way with the third and fourth 
classes. Each input pattern has been linked to a class 
codification (Table 1) representing the crack depth (output 
of FIS procedure). Fig. 3 shows the Eulero-Venn’s diagram 
of classes, focusing on the intersection zone. 
 

Table 1 – Codification of FIS’ output 
Class Codification

of SVM 
ID [20%÷60%], OD [60%÷20%] 1 

ID [40%÷100%], OD [100%÷40%] 2 
 

Fig. 3 – Eulero-Venn’s diagram of classes 

 
 

3   SVM: theory and classifiers 
A support vector classifier attempts to locate a hyperplane 
that maximises the distance from the members of each class 
to the same hyperplane. BSVMs have been introduced 
within the framework of the Statistical Learning Theory 
[3],[4], which describes the principle of Structural Risk 
Minimization (SRM). Considering a support vector 
classifier [5], the error probability is upper bounded by a 
quantity depending by both the error rate achieved on the 
training set and a measure of the “richness” of the set of 
decision functions it can implement (named “capacity”, or 
Vapnik Chervonenkis dimension). The more the set of 
decision functions is rich, the higher is the classifier’s 
capacity, and the upper bound on the error probability can 
increase for increasing values of the capacity. This principle 
aims at reaching the minimum of the upper bound on the 
error probability of a classifier, by achieving a trade-off 
between the performance on the training set and the 
capacity. For a complete explanation, let us first consider a 
binary case: assuming that the training data with k number 
of samples is represented by {xi, yi}, i=1,…,k, where x∈Rn 
is an n-dimensional vector and y∈{-1,+1} is the class label.  
If these training patterns are linearly separable, we have to 
find a vector w (which determining the orientation of a 
discriminating plane) and a scalar b (which determine offset 
of the discriminating plane from origin) in order to satisfy 
the following inequalities:  

a) 11 +=+≥+⋅ yallforbixw  
b) 11 −=−≤+⋅ yallforbixw  (1) 

So, we can find an Optimal Separation Hyperplane (OSH) 
which divides the data so that all the points with the same 
label lie on the same side of the hyperplane. Since the data 
are generally not linearly separable, a slack variable iξ , 
i=1,……,k, iξ  ≥ 0 has to be introduced [5], such that we can 
find a generalised OSH, also called Soft Margin Hyperplane 
(SMH), by solving the conditions: 

a) ⎥
⎦

⎤
⎢
⎣

⎡
+ ∑

=

k

i
ib

C
k 1

2

,...,,, 2
1min

1

ξ
ξξ

w
w

 

b) 01)( ≥+−+⋅ ii by ξixw     iξ  ≥ 0    i=1,...,k 
(2) 

Fig. 2 – Block diagram of Fluxset device  
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The first term in (2a) is the same as in the linearly separable 
case, and controls the learning capacity, while the second 
term controls the number of misclassified points. The 
parameter C is user-defined and can be interpreted as a 
regularization parameter, because it defines the machine 
sensibility to the errors: for a small C-value, the optimal 
hyperplane of separation maximizes the distance of the 
nearest point of S (the set of points to classify); vice versa, 
for a big C-value, the hyperplane minimizes the number of 
points not correctly classified. Where it is not possible to 
have a hyperplane defined by linear equations on the 
training data, the techniques described above for linearly 
separable data can be extended to non-linear decision 
surfaces. A technique introduced by Boser et al. [5], [6], [7] 
maps input data from an input space into a high dimensional 
feature space through some nonlinear mapping, by using a 
specific kernel function K (equation 3), such that: 

)()(),( jijiK xxxx φφ ⋅=  (3) 
 whereφ (x) is the mapping into feature space ok x input 
data vector. Details of some kernel functions and their 
parameters used with SVM classifiers are discussed by 
Vapnik [12]. 
 
3.1 Building a SVM classifier  
Balancing reliability and computational complexity of 
kernels, we analyzed the performances of SVMs using a 
polynomial kernel, since it allowed to obtain noteworthy 
performances with a low computational load and small 
training and simulation times; it has the following equation: 

0,)(),( >+−= γµγ λ
jiji xxxxK  (5) 

Considering (5), more than C, we had to set a group of 
parameters admitting real positive values. This setting 
procedure is necessary to obtain a Confusion Matrix (CM) 
which evaluates the goodness of a trained classifier. In this 
phase, CM has to be obtained by using training database (in 
our case DBTrain) and has to be as similar as possible with 
a square unitary matrix. In fact the element xij of confusion 
matrix is the probability P that a single pattern belonging to 
the ith class could be classified as belonging to the jth class. 
For our case of study, the CM has the following template: 

11 12

21 22

P P
P P
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

In order to explain the setting procedure, let us denote: 
− νk as the value of array of various parameters at the kth 

step of our procedure (k=1,...,N); 
− CMk as the kth Confusion matrix obtained by using the νk 

array; 
− CMI as the optimal Confusion matrix; 
− ε as an opportune error-threshold (0<ε<0.3). 
The upperbound for ε was setted equal to 0.3 because it is a 
sufficiently small value for treated data, but other values can 
be considered according to specific application. 
The setting procedure is described in the following flow 
chart (Fig. 4). 
The best CM has been obtained considering the values λ=7; 
C=100; γ=1; µ=0. In (6) it is showed this CM: 

0.9566 0.0434
0.0534 0.9466trainCM
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (6) 

This CM shows a good performance of SVM-based 
classifier; at the same time, the difference between CMtrain 
and identity matrix can exclude the learning by heart of  
SVM classifier. 
 
 
4   Data Pre-processing by Using WTs 
The design of a SVM classifier can turn out to be useful 
both as a first guess model and when real time systems are 
concerned. In order to improve the results, we have carried 
out a pre-processing based on WTs to emphasize, if any, 
characteristics of the signals which are able to furnish a 
more compact codify of the considered signal. WT also 
guarantees the possibility of not specifying in advance the 
key signal features and the optimal basis functions needed 
to project the signal in order to highlight the features. A WT 
is characterized by two functions: the scaling function 
( ) 2 ( ) (2 )

k Z
x h k x kφ φ

∈
= −∑  and its associated wavelet 

( ) 2 ( ) (2 )
k Z

x g k x kψ φ
∈

= −∑  where g(k) is a suitable 
weighting sequence. The sequence h(k) is the so-called 
refinement filter. The wavelet basis functions are 
constructed by dyadic dilation (index j) and translation 
(index k) of the mother wavelet . / 22 ( / 2 )j j

jk x kψ ψ −= − . The 
sequences h and g can be selected such that 
{ } 2( )jk jk Z
ψ

∈
constitutes an orthonormal basis of L2, the space 

of finite energy functions. This orthogonality permits the 
WDCs ( ) ,j jkd k f ψ=  and the Wavelet Approximation 
Coefficients (WACs) ( ) ,j jkc k f φ=  of any function f(x) to 
be obtained by inner product with the corresponding basis 
functions. In practice, the decomposition is carried out just 
over a finite number of scales J. WT with a depth J is then 
given by 

1

( ) ( ) ( )
J

j jk J Jk
j k Z k Z

f x d k c kψ φ
= ∈ ∈

= +∑∑ ∑  [8]. To decompose 

 
Fig. 4 – Flow chart of setting procedure. 
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the considered signal |V|, we theoretically chose to apply 
Daubechies 2b-level 4, since Daubechies 2 allows to use an 
adequate compact-support trasform and level 4 allows a 
good multiresolution analysis, without complications of 
system and computational load increases. Each signal was 
divided in four parts (D1, D2, D3, D4): only one of them 
evidences the defect. Tables 2 and 3 show WDCs (since 
they are linked to local trend of signal) for jsaem#1 e 
jsaem#3 (cracks ID, defect on D4), jsaem#6 e jsaem#7 
(cracks OD, defect on D1). It can be noticed from Table 2 
that WDCs of parts presenting cracks (D4 for jsaem#1 and 
jsaem#3, D1 for jsaem#6 and jsaem#7) vary at least of one 
order of magnitude as regards to other parts. 
 
Table 2 – Analysis of WDCs’ trend on different parts of the 

same signal 
Signal Range 

WDCs in 
D1 

Range 
WDCs in 

D2 

Range 
WDCs in 

D3 

Range 
WDCs in 

D4 

jsaem#1 [-3.2*10-4 

÷ 8.4*10-5] 
[-1.1*10-4 

÷ 6.3*10-5] 
[-3.4*10-5 

÷ 5.6*10-5] 
[-7.3*10-4 

÷ 1.3*10-3]

jsaem#3 [-1.2*10-5 

÷ 5.4*10-5] 
[-4.1*10-5 

÷ 1.9*10-5] 
[-2.6*10-5 

÷ 2.0*10-5] 
[-2.3*10-4 

÷ 2.8*10-4]

jsaem#6 [-2.4*10-4 

÷ 3.3*10-4] 
[-1.6*10-5 

÷ 3.0*10-5] 
[-3.1*10-5 

÷ 1.9*10-5] 
[-1.4*10-5 

÷ 3.3*10-5]

jsaem#7 [-9.0*10-4 

÷ 1.1*10-3] 
[-2.6*10-5 

÷ 1.2*10-5] 
[-5.2*10-5 

÷ 4.0*10-5] 
[-1.8*10-4 

÷ 3.3*10-4]
 

At the same time, Table 3 shows that WDCs extracted from 
signals’ portions presenting crack at different depths are 
also different. Because of these conditions, we chose to use 
also WCDs to realize SVM. 40 patterns (DBTrain) have 
been used to train the SVM, and the remaining 8 patterns 
(DBTest) have been used for test phase by means of CM. 

 
Table 3 – Comparative analysis of WDCs on signals’ parts 

showing crack presence 

Signal Crack Depth Crack 
segment 

WDCs 

jsaem#1 20%÷60% (ID) D4 [-7.3*10-4 ÷ 
1.3*10-3] 

jsaem#3 40%÷100% (ID) D4 [-2.3*10-4 ÷ 
2.8*10-4] 

jsaem#6 60%÷20% (OD) D1 [-2.4*10-4 ÷ 
3.3*10-4] 

jsaem#7 100%÷40% (OD) D1 [-9.0*10-4 ÷ 
1.1*10-3] 

 
 
5   Classification of data: the SVM approach 
Traditional classification algorithms usually univocally 
define a defect to a given depth. This depth can be thought 
as a class (category) of defects. A defect can not belong to 
more than a class at the same time. These kind of mutually 
exclusive representations are called “crisp”. Fuzzy sets 

theory meets this requirement, since it allows a defect to 
belong to different classes (depths) at the same time, 
according to the concept of partial membership [9].  In this 
section of the paper, we classify defects by means of SVM 
approach. In particular, a polynomial SVM have been 
trained by using DBTest. Table 4 shows the classification of 
8 patterns of DBTest; 5 pattern of them were wrongly 
classified (RMSE=62.5%). We suppose that  it is due to 
location of cracks inside the transition region [40%÷60%]. 
 

Table 4 – Simulation of classification on DBTest 
Signal Real 

classification 
Simulated 

classification 
jsaem#41 1 1 
jsaem#42 1 2 
jsaem#43 2 2 
jsaem#44 1 2 
jsaem#45 2 1 
jsaem#46 2 1 
jsaem#47 1 1 
jsaem#48 2 1 

 
In order to confirm that hypothesis, we analyze the CM (so-
called CM’) computed by means of misclassified signals 
(see (7)) which values are close to 0.5.  

0.526 0.474
'

0.512 0.488
CM

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 (7) 

In addition, CM’ retrieves a sort of indication about the 
membership of the whole set of misclassified signals to the 
transition zone. Due to the fact that the elements of CM’ are 
nest to 0.5, we can approximate the information carried out 
by CM’ on the whole set of misclassified signals to each 
element of the same set. So, each element of the set of 
misclassified signals belongs to the transition zone 
([40%÷60%]). With respect to Fuzzy approach, which uses 
a classification procedure composed by three steps (Fuzzy 
Inference, Fuzzy Entropy and Subsethood Operator) [9],  
the approach exploiting SVM is characterized by a simpler 
classification structure. In particular, just two steps (SVM-
based classifier & CM) are needed. The proposed approach 
allows to classify cracks in smaller and separated intervals 
of deepness, with high performances and reduced 
computational load, this way avoiding the presence of 
indecision regions. 
 
 
6   Conclusions 
In this paper a novel approach to classify defects in metallic 
plates in terms of their depth starting from a set of 
experimental measurements is proposed. Particularly, 
SVMs and CMs have been taken into account to solve the 
problem of “multi-membership” of defects to several 
categories. A pre-processing phase has been carried out by 
means of WTs, with the extraction of features related to 
local trends of the signals. In classification phase, an hybrid 
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system  based on polynomial SVM and CM (with its 
improved modification CM’) has been used in order to 
determine the defect’s depth and quickly classify the results 
with low-computational complexity algorithms. A 
classification has been carried out on three depth ranges 
([20%÷40%], [40%÷60%] e [60%÷100%]), therefore 
extending the scientific applications of the Fluxset device. 
Table 5 shows the depth of each crack for DBTest data as 
retrieved by the hybrid method proposed. 
 

Table 5– Crack depths of DBTest 
Signal Depth Signal Depth 

jsaem#41 [20%÷40%] Jsaem#42 [40%÷60%]
jsaem#43 [60%÷100%] Jsaem#44 [40%÷60%]
jsaem#45 [40%÷60%] Jsaem#46 [40%÷60%]
jsaem#47 [20%÷40%] Jsaem#48 [40%÷60%]

 
 
References: 
[1] S. Calcagno et al., Damage Analysis of Thin Metallic 

Plate, Advances in Structural Engineering and 
Mechanics, ASEM’02, CD ROM Proceedings, 2002, 
Pusan, Korea. 

[2] A. Gasparics, C.S. Daroczi, G. Vertesy, J. Pavo, 
Improvement of ECT probes based on Fluxset-type 
magnetic field sensor, Electromagnetic Nondestructive 
Evaluation, IOS Press,  No. 2, 1998, pp. 146-151. 

[3] V.N. Vapnik, The Nature of Statistical Learning 
Theory, Springer Verlag, New York, 1995. 

[4] V.N. Vapnik, Statistical Learning Theory, Wiley, New 
York, 1995. 

[5] C. Cortes, V. Vapnik, Support Vector Networks, 
Machine Learning, No. 20, pp. 273-297, 1995. 

[6] B. Boser, I. Guyon, V.N. Vapnik, «A training margin 
classifiers, Proceedings of 5th Annual Workshop 
Learning Theory, Pittsburgh, PA: ACM, pp. 142-152, 
1992. 

[7] N. Cristianini, J. Shawe-Taylor, An Introduction to 
Support Vector Machines, Cambridge University Press, 
London, 2000. 

[8] A. Graps, An Introduction to Wavelets, IEEE 
Computational Science & Engineering, Vol. 2, Issue 2, 
1995, pp. 50-61. 

[9] M. Buonsanti, S. Calcagno, F.C. Morabito, M. Versaci, 
Fuzzy Computation for Classifying Defects in Metallic 
Plates, Short Paper Proceedings of 12th International 
Symposium on Interdisciplinary Electromagnetics, 
Mechanics and Biomedical Problems, Bad Gastein 
(Austria), pp. 284-285, 2005. 

4th WSEAS International Conference on ELECTRONICS, CONTROL and SIGNAL PROCESSING, Miami, Florida, USA, 17-19 November, 2005 (pp.112-116)


