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Abstract-   In this paper, a new eigenmode algorithm, based on the method of lines and the generalized transmission line (GTL) equations is applied on full-wave analysis of (3-D) MMIC components. The analytical calculation in the direction of propagation enables the analysis of structures of very short or long interconnections between single discontinuities. The analysis is developed by non-equidistant discretization to reduce the discretization window. This technique is applied to compute the scattering parameters of some coupled lines microstrip filters. 
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1. Introduction

The method of lines is an efficient method for calculating the dispersion characteristics of planar waveguide structures. It depends upon converting a given system of partial differential equations into ordinary coupled equations by discretizing all but one of the independent variables. Then, a transformation of the principle axes is made to convert these coupled equations to uncoupled ones, which can be solved easily. This semi-analytical procedure saves a lot of computing time and leads to rapid convergence when simple conditions are imposed on the strip edges and the number of the discretization lines [1].

In the early time, the method of lines was used to solve two-dimensional problems as in the case of a single line on a dielectric interface [2-3] with an approach using analytical calculations perpendicular to the direction of propagation. Further developments are made by [4-5] to solve three-dimensional problems such as arbitrarily shaped resonators and periodic structures. The disadvantage of this approach is that the dimensions of the calculation window increase very much for longitudinally inhomogeneous structures. Also, special boundary conditions for the boundaries along the propagation direction have to be established.

Recently, a novel algorithm based on the (GTL) equations and the method of lines is used in the design of planar integrated circuits and waveguide discontinuities. In this algorithm, the structure is divided into cascaded subsections with respect to the propagation direction and the discretization lines are along the propagation direction of the wave. This procedure has been first applied to dielectric waveguide structures in integrated optics [6] and homogeneous filled waveguides [7], [8]. Further developments are made to solve planar microstrip circuit discontinuities in the case of isotropic and anisotropic substrates [9-15]. This algorithm has the advantage of dealing with longitudinal variations efficiently. In addition, scattering parameters can be directly calculated. 

2. Theory

2.1 Basic Equations
Consider a microstrip filter that consists of two side by side coupled lines microstrip lines distributed as shown in Fig.1. The domain in the direction of propagation, can be divided into three different sections, I, II, III as shown. The fields in each region can be expressed as [7]:     
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The general solution of Eq. (1) leads to a consistent system of coupled differential equations of the Strum-Liouville type for the potential components
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2.2 Discretization

The area of each section is now subjected to a 2-D discretization under the consideration of the interface and boundary conditions. Fig.2 shows the cross section of a planar waveguide with the adequate discretization points. The field components are discretized on different points noting that 
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. The scheme of discretization is executed according to that of [13] resulting in a vector for each field with a number of elements equals the corresponding discretized lines. The 2-D difference operators and the discreized dielectric constant are constructed by the Kronecker product from the one-dimensional ones; this is described in details in [1], [6] and are denoted by a hat
[image: image18.wmf])

 

 

ˆ

 

(

. 

Due to the presence of metal inside the cross section, the difference operators and the matrices containing the discretized value of permittivity are reduced and denoted by
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 the reduction is done as in [9], [14] for each line system. With these difference operators, the reduced and discretized wave equations (4) and (5) become.
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These equations are valid for non-equidistant discretization scheme, which is used to reduce the discretization window, and so the computation time, also it is useful for matching a certain shielding dimensions.

Where:
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are defined in [1] and  [16]. The reduction of the non-equidistant difference operators is done by the same concept of [14].

2.3. Transformation

Eq. (8) represents a system of coupled differential equations, to convert this system to an uncoupled one, we make a transformation by a metric 
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Using  (8), (11) we get
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The solution for the transformed potential yields
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or                          
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For the outer sections, the first formulation is chosen. A and B denote the amplitudes of the forward and backward going waves and 
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 is a diagonal matrix, containing the normalized propagation constants along the z direction, including the evanescent and propagating modes. For the inner sections, the second formulation is numerically favorable. Noting that 
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 represent a shift of the z co-ordinates as in [14].

2.4. Field Matching

Matching the tangential field components at the interfaces of each longitudinal section establishes a relation between the amplitudes A and B in all sections. The resulting scattering matrix for one microstrip discontinuity can be carried out as in [15]. For structures with several discontinuities, Eq. (14) is used to describe the transformed potential in the inner sections, and the following formulation for the fields in the matching plane.
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And
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and
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can be calculated by discretizing Eq. (1) and  found to be: 
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and
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The different signs in (16), (17) are valued for matching at the right and left sides of the section. The matrices 
[image: image55.wmf]IN

are identity matrices of the size of the corresponding reduced line system as shown in Fig.1.

Different number of lines in neighboring sections caused by different distribution of the metallizations require a partitioning of the matrices into two submatrices
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Where 
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correspond to the common discretization lines of the two sections, they have the same number of rows where 
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denote the lines ending on the metallization of the other region [9], [14]. The matching procedure of the field components at the interface of two sections I, II now yield
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Plane B
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(4.32)

Solving Eqs(25)-(34) for 
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Where:
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3. Numerical Results

The numerical results obtained by this method are presented for the two side by side parallel-coupled lines microstrip band pass filter shown in Fig.1.

 Figs.3 and 4 represent the variation of the normalized propagation constant (
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) and the scattering parameters with frequency. It is shown that, the number of propagating modes equals to the number of microstrip lines in each layer. It is also shown that, the maximum transmission occurs when 
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Fig.(5) represents another type of a coupled lines band stop filter while Fig.6 shows the variation of the normalized propagation constant 
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 with frequency for this filter. Figs(7) and (8) show the variation of the magnitude and the phase of the scattering parameters with frequency. It is found that when L1 equals 10.238mm all the input power is coupled and reflected to the input port. One of main advantages of this method, when dealing with a coupled microwave structures ishat, there is no need to make an approximation in taking the average value of the propagation constant 
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 when more than one mode is propagating in the layer. On the other hand, the values of the scattering parameters are given in this method as a direct function of the geometric dimensions. And this leads to, more accurate determination of the central frequency. Fig.(7) shows that, the first stop band is found at L1=0.48
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are the odd and the even modes respectively. 

Another type of band-stop coupled lines filter is obtained by changing the position of the coupled elements as seen in Figs.(9A-B)  

From Fig.(10) it is seen that, the number of the propagating modes in the layer II  of Fig.9-A is three which is equals to the number of the strip lines in the layer.

 Fig.(11) shows the variation of the scattering parameters of the band-stop filter against the frequency for the filter of Fig.(9-A). Its shown that, the band width becomes twice the band width of the case of single coupled element. 

Another type of band-stop coupled lines filter is obtained by changing the position of the coupled elements as seen in Fig.(9-B).  Figs(12) and (13) show the variation of the  normalized propagation constant and scattering parameters  against the frequency. 

A comparison between different types of coupled lines filters shown in Fig.(14) with different number of coupled elements is shown in Figs.(15). It is seen that, as the number of the coupled lines elements is increased as the band-width is increased but, when the number of the coupled elements exceed four the increasing in the band-width becomes less than 15%. 
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4. Conclusion:

In this paper, the analysis and design of coupled lines Microstrip filters is performed using the method of lines. Method of lines is developed by the (GTL) equations to find a wide range of longitudinal applications in (3D) MMIC circuits.         
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Fig.(14) Different forms of coupled lies band-stop filters 














Fig.(9) Three coupled lines band stop filter
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Fig.(5) Two coupled lines band stop filter
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