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Abstract.  Fingers of the hand are interdependent: when a person moves one finger or produces a force with a fingertip, other fingers of the hand also move or show force production. Hence, no direct correspondence exists between the neural commands to individual fingers and finger forces. This presentation deals with the neural network modeling of finger interaction.
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1 Introduction

When a person moves one finger or produces a force with a fingertip, other fingers of the hand also move or show force production [1-3]. This phenomenon has been termed enslaving [4, 5]. The finger interdependence is due to three sources/mechanisms:  (1) peripheral connections, both tendinous [6] and intermuscular myofascial [7], (2) multi-digit motor units in the extrinsic flexor and extensor muscles [2], and (3) central neural connections [8]. Due to the enslaving, there is no direct correspondence between neural commands to individual fingers and finger forces. 

The relations among fingers can be described with inter-finger connection matrices, IFM [4, 9]. The IFMs depend on the number of fingers involved in the task. The reason behind this dependence is a so called force deficit: a maximal force exerted by a finger in a multi-finger task is smaller than a maximal force produced by this finger in a single-finger test. The deficit increases with the number of fingers involved in the task [10]. Existence of the force deficit makes determination of the IFMs in static tasks nontrivial: recording of finger forces while the subject tries to press with only one finger does not account for the force deficit and, hence, is not sufficient to determine an IFM.
2 Computation of the IFMs with neural networks


2.1 Neural networks
The three-layer network model is shown in Figure 1.  The model consists of three layers: the input layer that models a central neural drive; the hidden layer modeling finger flexors serving several fingers simultaneously, and the output layer representing finger force output.  Note the existence of direct input-output connections that model muscular components that serve individual fingers.  The networks incorporate the following ideas/hypotheses:

(a) Existence of two groups of muscle components.  Each muscle/compartment of the first group serves an individual finger (unidigit muscles; intrinsic muscles of the hand) and each muscle/compartment of the second group serves several fingers (multi-digit muscles; extrinsic muscles of the hand).  The first group of muscles is represented in the neural networks by a direct one-to-one connection from the input to the output layer.  The second group is represented by the middle layer and its multiple connections. 

(b) The force deficit phenomenon is modeled by specific transfer characteristics of the middle layer neurons: the output of the middle layer was set as inversely proportional to the number of fingers involved.  Note that in the model, the force deficit effects are only assigned to the multi-digit muscles of the hand.  

The enslaving effects are modeled by the connection weights from the middle to the output layer.
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 Figure 1.  Basic network.  The hidden layer models the extrinsic hand muscles (those that are located in the forearm) having multiple connections to all four fingers while direct input-output connections represent the intrinsic hand muscles (those that are located in the hand) that serve individual fingers.  The index, middle, ring and little finger correspond to 1, 2, 3, and 4, respectively.


	



The net input to the jth unit of the hidden layer from the input layer is
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where 
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are connection weights from the ith unit in the input layer to the jth unit in the hidden layer.  The transfer characteristic of input/output in the hidden layer is described as
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where 
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is the output from the hidden layer.  The net input to the kth unit in the output layer 
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where 
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are connection weights from the jth unit in the hidden layer to the kth unit in the output layer.  
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 are the connection weights directly from the kth unit in the input layer to the kth unit in the output layer. An identity input/output transfer relationship was defined at the output layer, i.e.,
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The inputs to the network were set at 
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=1, if finger i was involved in the task, or 
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 = 0 otherwise. The weights from the input layer to the hidden layer were set as a unit constant (
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). The network was trained using a backpropagation algorithm [11].  The network has been validated by using both training data set and validation data set. It has been shown that the RMS (root mean square) is 2.98 N when one of fifteen tasks was used as validation data set [9]. 
The developed network yielded a relation between the neural commands and the finger forces:
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where 
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 is a (4(1) vector of the finger forces, 
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 is a (4(4) matrix of inter-finger weight coefficients, 
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 is a (4(1) vector of dimensionless neural commands (command to a finger ranges from 1.0, when a finger is intended to produce maximal force, to 0.0, if the finger is not intended to produce force), 
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 is a (4(4) diagonal matrix with gain coefficients that model the input-output relations for single-digit muscles, and k  is  a coefficient that depends on the number of fingers in the task (0 ( k (1). The value of k was set either at 1/n, where n is the number of intended fingers in the force production task, or computed by the network; the two approaches yielded similar results [4].  From equation (5) it follows that a command cj sent to a finger j (j = 1, 2, 3, 4) activates all other fingers to a certain extent (enslaving effects).  For a given n, in particular for n=4, equation (5) can be reduced to 
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where [W] is the (4(4) IFM accounting for both force enslaving and force deficit [4, 5, 9]. 
2.2 Experimental determination of the IFMs
The IFMs have been determined both for the finger flexion/extension (Experiment 1) and abduction/adduction efforts (Experiment 3). In Experiment 1 forces produced by the index (I), middle (M), ring (R) and little (L) fingers of one hand were recorded during various tasks.  All finger combinations — I, M, R, L, IM, IR, IL, MR, ML, RL, IMR, IML, IRL, MRL, and IMRL — were used as master fingers. In experiment 2, 17 tasks presented in Table 1 have been investigated. The IFMs were computed using the network described above.
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Figure 2. Devices to measure the finger forces in flexion (upper panel) and abduction/adduction (bottom panel).
	Task
	Task finger(s)
	Direction(s)
	# of conditions

	Flexion
	I, M, R, L, IMRL
	– Z = +n
	5

	R/U effort
	I, M, R, L, IMRL
	± X = ±t
	10

	Opposition
	IMRL
	Ab-/ Adduction
	2


Table 1:  Experimental conditions.  The task fingers (a subset of Index – I, Middle – M, Ring – R, and Little – L) were those that were explicitly instructed to produce force.  There were 5 flexion and 12 radial/ulnar (R/U) deviation tasks.  The 12 R/U tasks included four single-finger tasks and two multi-finger tasks (i.e. four fingers acting together, or acting in opposition) that were performed in two directions. Letter n stands for normal and t for tangential. 

3 Finger interdependence during manipulation of the hand-held objects
An interest to the IFMs greatly increased when it was shown that the enslaving occurs during natural grasping [12]. Knowledge of the IFMs allowed to reconstruct the intensity of neural commands sent to individual fingers and to estimate the magnitude of the enslaving effects, the force exerted by finger i due to the command sent to finger j. 
If the vector of finger forces [F] and IFM matrix [W] are known the vector of the neural commands can be determined by inverting equation 6.  The vector of neural commands is then
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To test whether the various observed force-sharing patterns were optimal, optimization methods have been employed.  The norms of the following vectors were employed as cost functions: 

(G1) Finger forces.

(G2) Finger forces normalized with respect to the maximal forces measured in single-finger tasks. 

(G3) Finger forces normalized with respect to the maximal forces measured in a four-finger (IMRL) task. 

(G4) Finger forces normalized with respect to the maximal moments that can be generated by the fingers while grasping an object with five digits.

(G5) Neural commands. 
The main distinction between the first four cost functions and the fifth one lies in the way of finger interdependence being accounted for: the cost functions based on the finger forces neglect the finger interdependence while the optimization of neural commands accounts for it.

In experiments with static holding of a handle with an attached load, when the subjects were required to produce different combinations of force and torque, some (‘agonist’) fingers generated moments in the direction required by the task while other (‘antagonist’) fingers produced moments in the opposite direction. Optimization of neural commands was able to model such ‘antagonist’ finger force production and resulted in a better correspondence between the actual and predicted finger forces than the optimization of various norms of the finger forces (Figure 3). Hence, during grasping strong commands to particular fingers activate also fingers that generate moments of force in the direction opposite to the direction required by the task.
Figure 3. Comparison of actual force data with force patterns predicted by different optimization criteria. Criteria G1-G4 do not predict the antagonist moments while the optimization of neural commands does.
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4 Conclusion

 The neural network model incorporated anatomical and neurophysiological aspects of finger coordination. A relatively simple network is able to emulate the complicated patterns of finger independence and interdependence. The study demonstrates that artificial neural networks are useful and effective tools to enhance our understanding of control mechanisms of the neuromotor system.
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