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Abstract: We develop nonsmooth optimization techniques to solve H∞ synthesis problems under
additional structural constraints on the controller. Our approach avoids the use of Lyapunov vari-
ables and therefore leads to moderate size optimization programs even for very large systems. The
proposed framework is very versatile and can accommodate a number of challenging design prob-
lems including static, fixed-order, fixed-structure, decentralized control, design of PID controllers
and simultaneous design and stabilization problems. Our algorithmic strategy uses generalized
gradients and bundling techniques suited for the H∞-norm and other nonsmooth performance
criteria. Convergence to a critical point from an arbitrary starting point is proved (full version)
and numerical tests are included to validate our methods.

Key-Words:- H∞-synthesis, nonsmooth optimization, Clarke subdifferential, BMI.

1 Introduction

In this paper we consider H∞-synthesis problems
with additional structural constraints on the con-
troller. This includes static and reduced-order
H∞-output feedback control, structured, sparse
or decentralized synthesis, simultaneous stabiliza-
tion problems, multiple performance channels, and
much else. We propose to solve these problems with
a nonsmooth optimization method exploiting the
structure of the H∞-norm.

In nominal H∞-synthesis, feedback controllers
are computed via semidefinite programming (SDP)
[13, 1] or algebraic Riccati equations [10]. When
structural constraints on the controller are added,
the H∞-synthesis problem is no longer convex.
Some of the problems above have even been rec-
ognized as NP -hard [19] or as rationally undecid-
able [5]. These mathematical concepts indicate at
least the inherent difficulty of H∞-synthesis under
constraints on the controller.

Even with structural constraints, the bounded
real lemma may still be brought into play. The dif-
ference with customary H∞ synthesis is that it no
longer produces LMIs, but bilinear matrix inequal-

ities, BMIs, which are genuinely non-convex. Opti-
mization code for BMI problems is currently devel-
oped by several groups, see e.g. [16, 3, 24, 18, 11],
but it appears that the BMI approach runs into nu-
merical difficulties even for problems of moderate
size. This is mainly due to the presence of Lya-
punov variables, whose number grows quadratically
with the number of states.

Out present approach does not use the bounded
real lemma and thereby avoids Lyapunov variables.
This leads to moderate size optimization programs
even for very large systems. In exchange, the cost
functions are nonsmooth and require special opti-
mization techniques. We evaluate the H∞-norm via
the Hamiltonian bisection algorithm [7, 6, 12] and
exploit it further to compute subgradients, which
are then used to compute descent steps.

This present paper is a contraction of a full ver-
sion where additional algorithmic details, a conver-
gence proof and further examples can be found. The
reader is also referred to [20] and [21] for a compre-
hensive discussion on convergence and further tech-
nical details. In the sequel, we shall use notions
from nonsmooth analysis covered by [9].



2 H∞ synthesis

The general setting of the H∞ synthesis problem
is as follows. We consider a linear time-invariant
plant described in standard form by the state-space
equations:

P (s) :
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where x ∈ R
n is the state vector, u ∈ R

m2 the
vector of control inputs, w ∈ R

m1 a vector of exoge-
nous inputs, y ∈ R

p2 the vector of measurements
and z ∈ R

p1 the controlled or performance vector.
Without loss of generality, it is assumed throughout
that D22 = 0.

Let u = K(s)y be a dynamic output feedback
control law for the open loop plant (1), and let
Tw→z(K) denote the closed-loop transfer function
of the performance channel mapping w into z. Our
aim is to compute K(s) such that the following de-
sign requirements are met:

• Internal stability: For w = 0 the state vector
of the closed-loop system (1) and (2) tends to
zero as time goes to infinity.

• Performance: The H∞ norm ‖Tw→z(K)‖∞ is
minimized.

We assume that the controller K has the following
frequency domain representation:

K(s) = CK(sI −AK)−1BK +DK , AK ∈ R
k×k,
(2)

where k is the order of the controller, and where
the case k = 0 of a static controller K(s) = DK

is included. Often practical considerations dic-
tate additional challenging structural constraints.
For instance it may be desired to design low-
order controllers (0 ≤ k ≪ n) or controllers with
prescribed-pattern, sparse controllers, decentralized
controllers, observed-based controllers, PID control
structures, synthesis on a finite set of transfer func-
tions, and much else. Formally, the synthesis prob-
lem may then be represented as

minimize ‖Tw→z(K)‖∞
subject to K stabilizes (1)

K ∈ K
(3)

where K ∈ K represents a structural constraint on
the controller (2) like one of the above.

Without the restriction K ∈ K, and under stan-
dard stabilizability and detectability conditions, it
is customary to synthesize K(s) using Riccati equa-
tions or LMI techniques [14]. This scenario changes
dramatically as soon as constraints K ∈ K are
added. Then the problem may no longer be trans-
formed into an LMI or any other convex program,
and alternative algorithmic strategies are required.

Also, it is important to pay attention to the fact
that even genuine stabilization problems can be cast
as H∞ synthesis problems. Indeed, under standard
assumptions, a system is stable if and only if a well
chosen closed-loop transfer function has finite H∞

norm (see full paper). Therefore, the proposed tech-
niques also cover stabilization problems as a special
case.

3 H∞-norm subdifferentials

In this section, we start characterizing the subdif-
ferential of the H∞-norm, and derive expressions
for the Clarke subdifferential of several nonconvex
composite functions f(x) = ‖G(x)‖∞, where G is a
smooth operator defined on some R

n with values in
the space of stable matrix transfer functions H∞.

Consider the H∞-norm of a nonzero transfer ma-
trix function G(s):

‖G‖∞ = sup
ω∈R

σ (G(jω)) ,

where G is stable and σ(X) is the maximum singu-
lar value of X. Suppose ‖G‖∞ = σ (G(jω)) is at-
tained at some frequency ω, where the case ω = ∞
is allowed. Let G(jω) = UΣV H be a singular value
decomposition. Pick u the first column of U , v the
first column of V , that is, u = G(jω)v/‖G‖∞ . Then
the linear functional φ = φu,v,ω defined as

φ(H) = ‖G‖−1
∞ ReTr G(jω)HuuHH(jω)

is continuous on the space H∞ of stable trans-
fer functions and is a subgradient of ‖ · ‖∞ at G
[8]. More generally, assume that the columns of
Qu form an orthonormal basis of the eigenspace
of G(jω)G(jω)H associated with the largest eigen-
value λ1

(

G(jω)G(jω)H
)

= σ(G(jω))2. Then for all



complex Hermitian matrices Yv � 0, Yu � 0 with
Tr (Yv) = 1 and Tr (Yu) = 1,

φ(H) = ‖G‖−1
∞ ReTr G(jω)HQuYuQH

u H(jω) (4)

is a subgradient of ‖ · ‖∞ at G. Finally, with
G(s) rational and assuming that there exist finitely
many frequencies ω1, . . . , ωp where the supremum
‖G‖∞ = σ(G(jων)) is attained, all subgradients of
‖ · ‖∞ at G are precisely of the form

φ(H) = ‖G‖−1
∞ Re

p
∑

ν=1

Tr G(jων)HQνYνQ
H
ν H(jων),

where the columns of Qν form an orthonormal basis
of the eigenspace of G(jων)G(jων)H associated with
the leading eigenvalue ‖G‖2

∞, and where Yν � 0,
∑p

ν=1 Tr(Yν) = 1. See [9, Prop. 2.3.12 and Thm.
2.8.2] and [2] for this.

Suppose now we have a smooth operator G, map-
ping R

n onto the space H∞ of stable transfer func-
tions G. Then the composite function f(x) =
‖G(x)‖∞ is Clarke subdifferentiable at x with

∂f(x) = G′(x)⋆[∂‖ · ‖∞ (G(x))], (5)

where ∂‖ ·‖∞ is the subdifferential of the H∞-norm
obtained above, and where G′(x)⋆ is the adjoint of
G′(x), mapping the dual of H∞ into R

n. In the se-
quel, we will compute this adjoint G′(x)⋆ for special
classes of closed-loop transfer functions. Suitable
chain rules covering this case are for instance given
in [9, section 2.3].

4 Clarke subdifferentials in

closed-loop

Given a stabilizing controller K(s) and a plant with
the usual partition

P (s) :=

[

P11(s) P12(s)
P21(s) P22(s)

]

,

the closed-loop transfer function is obtained as

Tw→z(K) := P11 + P12K(I − P22K)−1P21 ,

where the state-space data of P11, P12, P21 and P22

are given in (1) and the dependence on s is omitted
for brevity. Our aim is to compute the subdiffer-
ential ∂f(K) of f := ‖ · ‖∞ ◦ Tw→z at K. We first

notice that the derivative T ′
w→z(K) of Tw→z at K

is

T ′
w→z(K)δK := P12(I−KP22)

−1δK(I−P22K)−1P21,

where δK is an element of the same matrix space
as K.

Now let φ = φY be a subgradient of ‖ ·
‖∞ at Tw→z(K) of the form (4), specified by
Y � 0, Tr(Y ) = 1 and with ‖Tw→z(K)‖∞
attained at frequency ω. According to the
chain rule, the subgradients ΦY of f at K are
of the form ΦY := T ′

w→z(K)⋆φY ∈ Mm2,p2
,

where the adjoint T ′
w→z(K)⋆ acts on φY through

〈T ′
w→z(K)⋆φY , δK〉 = 〈T ′

w→z(K)δK, φY 〉 =

‖Tw→z(K)‖−1
∞ ReTr

(

(I − P22(jω)K(jω))−1P21(jω)
Tw→z(K, jω)HQY QH P12(jω)
(I − K(jω)P22(jω))−1δK(jω) ) .

(6)
In consequence, for a static K, the Clarke subdif-
ferential of f(K) := ‖Tw→z(K)‖∞ at K consists of
all subgradients ΦY of the form

‖Tw→z(K)‖−1
∞ Re

(

(I − P22(jω)K)−1P21(jω)

Tw→z(K, jω)H QY QH P12(jω)(I − KP22(jω))−1 )T ,
(7)

where Y � 0 and Tr (Y ) = 1. Recall that ΦY is now
an element of the same matrix space as K and acts
on test vectors δK through 〈ΦY , δK〉 = Tr(ΦT

Y δK).

This formula is easily adapted if the H∞-norm is
attained at a finite number of frequencies ω1, . . . , ωq.
In this more general situation, subgradients ΦY of
f at K are of the form

‖Tw→z(K)‖−1
∞

∑q
ν=1 Re

(

(I − P22(jων)K)−1P21(jων)
Tw→z(K, jων)HQYνQ

H P12(jων)

(I − KP22(jων))−1 )T ,
(8)

where Y ∈ P with

P :=

{

(Y1, . . . , Yq), Yν � 0,

q
∑

ν=1

Tr(Yν) = 1

}

.

At this stage, it is important to stress that ex-
pressions (6), (7) and (8) are general and can ac-
commodate any problem such as static, dynamic,
PID, matrix fraction controllers and also multiple
performance channels.



5 Steepest descent method

Nonsmooth techniques have been used before in al-
gorithms for controller synthesis. For instance, E.
Polak and co-workers have proposed a variety of
techniques suited for eigenvalue or singular-value
optimization and for extensions to the semi-infinite
case, covering in particular the H∞-norm (see [22],
[23] and the citations given there). Another refer-
ence is [8], where the authors exploit the Youla pa-
rameterization via convex nondifferentiable analysis
to derive the cutting plane and ellipsoid algorithms.

Let us consider the problem of minimizing f(x) =
‖G(x)‖∞, where x regroups the controller data, re-
ferred to as K in the previous section, and where G
maps R

n smoothly into a space H∞ of stable trans-
fer functions. We write G(x, s) or G(x, jω) when
the complex argument of G(x) ∈ H∞ needs to be
specified.

A necessary condition for optimality is 0 ∈
∂f(x) = G′(x)⋆∂‖ · ‖∞ (G(x)). It is therefore rea-
sonable to consider the program

d = −
g

‖g‖
, g = argmin{‖φY ‖ : Y ∈ P} (9)

which either shows 0 ∈ ∂f(x), or produces the di-
rection d of steepest descent at x if 0 6∈ ∂f(x),
and where the φY are as in (8). If we vectorize
y = vec(Y ), Y = (Y1, . . . , Yq), then we may repre-
sent φY by a matrix vector product, φY = Φy, with
a suitable matrix Φ. Program (9) is then equivalent
to the following SDP:

minimize t

subject to

[

t yT ΦT

Φy tI

]

� 0

Yi � 0, i = 1, . . . , q
eT y = 1

(10)

where eT y = 1 encodes the constraint
∑

i Tr(Yi) =
1. The direction d of steepest descent at x is then
obtained as d = −Φ y/‖Φ y‖, where (t, y) is solution
of (10) with y 6= 0. This suggests the following
algorithm:

1. If 0 ∈ ∂f(x) stop. Otherwise:

2. Solve (10) and compute the direction d of
steepest descent at x.

3. Perform a line search and find a descent step
x+ = x + t d.

4. Replace x by x+ and go back to step 1.

The drawback of this approach is that it may fail
to converge due to the nonsmoothness of f . We
believe that a descent method should at least give
the weak convergence certificate that accumulation
points of the sequence of iterates are critical. This
is not guaranteed by the above scheme. The reason
is that the steepest descent direction at x does not
depend continuously on x. In the full version of this
paper, we discuss two variants of the basic descent
algorithm and we establish convergence to a local
minimum. This is omitted due to space limitation.

6 Numerical experiments

In this section we test our nonsmooth algorithms on
a variety of synthesis problems from the COMPleib
collection by F. Leibfritz [17]. Computations were
performed on a (low-level) SUN-Blade Sparc with
256 RAM and a 650 MHz sparcv9 processor. LMI-
related computations for search directions used the
LMI Control Toolbox [15] or our home made SDP
code [3].

Our algorithm is a first-order method. Not sur-
prisingly, it may be slow in the neighborhood of a
local solution. We have implemented various stop-
ping criteria to ensure that an adequate approxima-
tion of a solution has been found and to avoid un-
warranted computational efforts as is often the case
with a first-order algorithm. The first of these ter-
mination criteria is an absolute stopping test, which
provides a criticality assessment

inf{‖g‖ : g ∈ ∂f(x)} < ε1, (11)

which is readily performed using (10).

This is reasonable, as 0 ∈ ∂f(x) indicates a criti-
cal point. It is also mandatory to use relative stop-
ping criteria to reduce the dependence on the prob-
lem scaling. The test

‖Tw→z(K)‖∞−‖Tw→z(K
+)‖∞ < ε2(1+‖Tw→z(K)‖∞) ,

(12)
compares the progress achieved relatively to the
current H∞ performance, while

‖K+ − K‖ < ε3(1 + ‖K‖) (13)



compares the step-length to the controller gains.
The tolerances

ε1 = 1e−5, ε2 = 1e−3, ε3 = 1e−3

have been used in our numerical testing. For stop-
ping we required that either the first two tests or
the third one are satisfied.

The synthesis procedure is based on the scheme
(3) and must be initialized with a stabilizing con-
troller. This initial phase I is described in the full
paper and in [2].

We compare the results of our nonsmooth al-
gorithm variant II in columns ’nonsmooth H∞’
to older results obtained with the specialized aug-
mented Lagrangian (AL) algorithm described in [4],
displayed in columns ’H∞ AL’ (see Table). In col-
umn ’H∞ full’ we also display the gain obtained
with a full-order feedback controller, synthesized by
LMI-methods or via the algebraic Riccati equation
solver. This is a lower bound for the gain in col-
umn ’nonsmooth H∞’. The results obtained with
our present technique are close to those obtained
in [4], except for problems with large state dimen-
sion as ‘AC10’ (55 states), ‘BDT2’ (82 states) and
‘HF1’ (130 states) where the augmented Lagrangian
method fails, while the present nonsmooth method
is still functional. In the same vein, we have ob-
served that even customary Riccati or LMI solvers
encounter serious difficulties or even break down
when solving the full-order (hence convex) problem
for ‘AC10’, ‘BDT2’ and ‘HF1’.

7 Conclusion

We have proposed several new algorithms to mini-
mize the H∞-norm subject to structural constraints
on the controller dynamics. The proposed method
uses nonsmooth techniques suited for H∞ synthe-
sis and for semi-infinite eigenvalue or singular value
optimization programs. Variant I and variant II of
our algorithm are supported by global convergence
theory, a crucial parameter for the reliability of an
algorithm in practice. Variant II has been shown
to perform satisfactorily on a number of difficult
examples. In particular, three examples with large
state dimension (n = 55 n = 82 and n = 130)
have been solved. More importantly, our present
techniques and tools pave the way for investigating

an even larger scope of synthesis problems, char-
acterized through frequency domain inequalities of
the form λ1(H(x, ω)) ≤ 0, ω ≥ 0, where H(x, ω)
is Hermitian-valued and x stands for controller pa-
rameters and possibly multiplier variables, as is the
case when IQC formulations are used. This is a
strong incentive for further developments.
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problem (n, m, p) order iter cpu (sec.) nonsmooth H∞ H∞ AL H∞ full

AC8 (9, 1, 5) 0 20 45 2.005 2.02 1.62
HE1 (4, 2, 1) 0 4 7 0.154 0.157 0.073

REA2 (4, 2, 2) 0 31 51 1.192 1.155 1.141
AC10 (55, 2, 2) 0 15 294 13.11 intractable 3.23
AC10 (55, 2, 2) 1 46 408 10.21 intractable 3.23
BDT2 (82, 4, 4) 0 44 1501 0.8364 intractable 0.2340
HF1 (130, 1, 2) 0 11 1112 0.447 intractable 0.447

H∞ synthesis with nonsmooth algorithm
algorithmic variant II - εω = 0.05


