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Abstract: - When dealing with the concurrent access from a multitude of clients to petabyte-scale data
repositories, high performance, fault tolerance, robustness, and scalability are four very important issues. This
paper describes the choices and the work done to address the high demand data access needs of modern
physics experiments, such as the BaBar experiment at SLAC, and of any other field in which a reliable data
access is a primary issue. For this purpose a highly scalable architecture has been designed and deployed
which allows thousands of batch jobs and interactive sessions to effectively access the data repositories with

as few fails as possible.
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1-From a storage system to a data
access architecture

The BaBar experiment [1] produces a huge amount
of data to be accessed by a high number of analysis
jobs. For this reason it requires a reliable and scalable
data access system. In 2002, the BaBar Computing
Model 2 committee decided to migrate the data
storage system from Objectivity/DB
(http://www.objectivity.com) to a flat file system
built upon object streams (aka “Kanga”, [2]). The
new storage system is based on the persistency
mechanism of the C++ ROOT framework, developed
at CERN [3], that is able to stream an object on a
binary file in a similar way as the Java framework
does.

ROOT also provides a remote file access
mechanism via a TCP/IP-based data server daemon

known as r oot d which has the only purpose to serve
opaque data. A plugin manager (Fig.1) hides the user
from the actual location of the files, by masking the
path (local file system or remote server) which is
going to use to access the data.

The purpose of getting access to remote file
repositories could be reached, in principle, with other
remote file access mechanisms. For instance, one
could distribute the file repositories over many NFS
servers [4], but a deeper requirements analysis shows
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that this kind of solution is not acceptable for many

reasons:

- the size of the data repository: thousands of
thousands of files must be scattered among
multiple servers. Beside the complex organization
needed, NFS does not provide any tool useful to
automatically manage the choice of the right
mounted partition disk to access for a request, i.e.
what is often called “logical to physical name
resolution”;

« the number of concurrent accesses to the data:
thousands of concurrent accesses from end users
and batch jobs, that continuously analyze the data
in a completely random way, greatly overcome the
scalability of the basic NFS architecture [5];



- software engineering issues: NFS simulates a local
file system and most jobs are not much tolerant to
all possible troubles accessing local files;

« the use of NFS would implies mounting remote
volumes on the machine where the user is running
his jobs; this is not acceptable from the point of
view of many system administrators, and
especially in the case in which the user machine is
a desktop computer or even a laptop;

- if for any reason some NFS servers are having
troubles, typically the machine mounting the
remote volumes will experience problems when
any NFS access is tried, with no user (or
application) control of timeouts, retries etc.

To overcome some of these limitations, the
alternative of building a data server suggests a
different paradigm which can be deployed or
extended in order to satisfy the heavy requirements of
the data analysis tasks. At the server side, r oot d
offers the solution to share this big load between
many machines keeping the files on their local disks,
while at the client side, a specialization of the
ROOT's data access classes can provide a way to
access the remote data which is transparent to the
users of the framework.

2 - Performance, scalability and fault
tolerance: the main goal

The deployment of big processing farms, as well as
of data access systems able to handle millions of
scattered files must be able to give data processing
services to a wide community of users with high
availability and performances. Some of the needed
characteristics are:

« multiple servers have to cooperate with the
purpose of handling huge amounts of distributed
(and redundant if necessary) data without forcing
the client to know which server to contact to
access a particular file;

« the server has to hide the client applications from
its underlying file system types, even if it manages
one or more tape units;

+ aload balancing mechanism is needed, in order to
efficiently distribute the load between clusters of
Servers;

- the system resources (sockets, memory, cache,
disk accesses, cpu cycles, etc.) have to be used at
the best, at both client and server sides;

« ahigh degree of fault tolerance at the client side is
mandatory, to minimize the number of
jobs/applications which have to be restarted after a
transient or partial server side problem or any kind
of network glitch.

The new architecture designed by the BaBar software

Fig.2 State transition diagram for the fault tolerant behavior of a client

specialists to achieve all the requirements listed
above has been called Xxrootd (“eXtended”
rootd). Its structure allows the construction of
single server data access sites up to load balanced
environments and structured peer-to-peer
deployments, in which many servers cooperate to
give an exported uniform namespace.

These kind of structures in any case present an

interface defined as a communication protocol, which

defines the possible interactions and the
functionalities given to the clients.

The specific client of the xr oot d system has been

built both in ROOT compliant form (officially

integrated in ROOT and multplatform) and also as a

POSIX compliant one. Some of the design choices

which give the needed functionalities are:

- the communication protocol, which defines an
interface able to:

+ request access to an Xr oot d system through
authentication handshakes

« query a system for resource location

- get access to the requested resource in the place
where it can be accessed (i.e. servers giving
access to local data or xrootd proxies
allowing remote sites interoperability [6])

+ sophisticated communication policies at the client
side, able to handle any kind of communication
errors (Fig.2). The failing requests are retried
until:
> another working server is found;
> the same server becomes available again;
> a specified maximum number of retries is

reached;

« multiplexed persistent connections: this means
that a single TCP connection from a client to a
server can carry multiple independent data streams
for other client instances. Also, TCP connections
are persistent for a short period if connected to a
data server, for a long time if connected to a
redirector. This helps in lowering the system
resource consumption and the network overheads
due to repeated multiple connections to the same



host.

2.1 - Related work

Most of the work found in literature concerning
fault tolerant and fast data access doesn't deal with
communication robustness and highly available
systems. Furthermore the distributed file system
paradigm is usually tied to policies dealing with
distributed caching and coherency, path and filename
semantics. These are some reasons why a distributed
file system usually causes a consistent network and
cpu overhead when dealing with the operations on the
file it manages [7][8].

One of the problems which may arise is given by
the network overhead due to the synchronization of
the internal caches, a serious issue when dealing with
petabytes of data continuously accessed by thousand
of clients, a scenario not so usual in the distributed
file systems world.

However, such a perspective is common in many
the organizations that rely on massive data sharing,
not only depending from the ROOT package or the
physics community. For instance, such a robust file
server facility could be integrated in the many Grid
[9]1[10][11] initiatives that will support the analysis on
next generation physics experiments or other fields.

Scalability is another critical aspect considered in
literature. Many existing systems are scalable in some
way, [4]; but what can be noted is that very often the
scaling measurements are done with numbers of tens
clients per server, not hundreds of thousands that
could be sources of critical server lockups. This is
another reason for thinking about an architecture for
data access, trying to reach a “nearly linear” scaling
performance, limited only by the data throughput and
latency of both disks and networks.

For this reason, the main focus in this work has not
been the pure data throughput for a single client [12]
[13]. In fact it can be noted that the pure data
throughput of NFS [5], for a single server, may be
higher than that of a user-mode application like a
daemon implementing a TCP file server. But to
handle thousands of clients one must have the
possibility of putting together many servers in
parallel, achieving scalability and total transparency
from the clients' perspective and also minimizing the
system resources needed by such communication
mechanisms.

This work has many common points with the one
described about the Google File System [14]. A
difference with the Google File System is that it
considers parts of files (chunks) as its data unit, while
xrootd has the single file. Also, at this moment, the
xrootd system does not have a mechanism to keep the
coherence between multiple copies of a file which
might be modified by an application, since it's not

needed by its current deployment. It seems also that
the xrootd/TXNetFile project put a bigger effort in
refining the communication policies and the resource
consumption.

Other interesting works can be found in the
distributed file systems area. An interesting approach,
for some verses similar to that of peer-to-peer file
sharing networks [15][16] is depicted in [17] with the
xFS implementation. Approaches for some verses
more similar to that used by xrootd to locate and
distribute files can be found in [18][19].

2.2 - XROOTD - The server side

2.2.1 - Overview

xrootd represents the culmination of work
previously done in understanding the remote data
server scalability issues with the Objectivity/DB’s
Advanced Multithreaded Server (AMS) [20]. While
the xrootd server is not innovative in the sense that it
appears externally to be like any other remote data
server, it does represent a significant advance in such
data serving architectures. The server is composed of
four layers: Network and thread management layer,
Protocol layer, File system layer, Storage layer, see
Fig.3.

A layered approach allows us to optimize a specific
set of functionalities to minimize resource usage.
Additionally, each layer is sufficiently isolated so that
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Fig.3 xrootd architecture

it can be dynamically loaded. This allows for a
number of implementations to determine which
functions best in any particular environment. By
extension, multiple implementations of a particular
layer can be loaded at one time. This proved to be
essential in providing backward compatibility with
rootd since the thread management layer could run
the rootd as well as the xrootd protocol at the same
time; the selection determined by the level of client
software being run.



2.2.2 - Network and Thread Management

This layer is essentially the protocol dispatcher. It

isolates all other layers from the details of socket and

thread management. The particular optimization that
were incorporated in this layer were:

« Socket stickiness: a socket is temporarily bound to
a thread and associated objects to avoid
rescheduling overhead between requests. The
socket is unbound when it becomes inactive or
when system resources become too constrained to
allow such dedication of resources.

« Socket polling: the mechanism used to detect
sockets ready for I/O is made architecture
dependent. For instance, /dev/poll, a more
efficient polling mechanism, is used on those
platforms that support it. Otherwise, poll() is used
but is optimized to significantly reduce the
processing cost of the poll table.

« Object persistence: allocated objects remain
allocated as long as there is a reasonable potential
for reuse. This includes thread objects. Managing
objects in this way optimizes memory usage while
minimizing synchronization points where objects
are allocated and deleted.

» Generalized object scheduling: the major object at
this layer is “job” class. Most object derive from
the job class and objects at other layers generally
do so as well. Any job class derived object can be
asynchronously scheduled to perform internal
maintenance and tuning functions and is
extensively used for global optimization purposes.

2.2.3 - Protocol Layer

The xrootd protocol is the default protocol run by

network and thread management layer. This 64-bit

TCP-based protocol provides generalized file access,

that in many ways is similar to AFS. However, the

protocol has been optimized in several ways to be
more scalable:

« Multiple independent streams are supported on a
single socket. This minimizes resource usage in
the presence of multiple requests.

+ Clients can be redirected to another server at any
time. This allows dynamic server selection and
load distribution while providing for direct point-
to-point client-server connections.

+ Clients may be asked to delay server contact. This
allows the server to coordinate overloads and
resource constraints by pushing the problem back
into the network; avoiding typical server
meltdowns when faced with a client onslaught.

« Clients may piggy-back read-ahead lists with any
read request. This allows the server to optimize
future disk access and provide better performance.

« Client may ask for files to be prepared for future

access. This allows the server to make sure files
are online and properly placed for future client
requests.

- Servers may ask clients to perform certain actions
at any time. This is known as unsolicited response
requests that typically take the form of redirects
and execution deferrals; providing the server
maximum flexibility in coordinating the load.

Additionally, the protocol provides for a generalized
security framework that allows any authentication
protocol to be used; providing scalable security.
The scalable protocol elements also provide the
foundation for the inclusion of peer-to-peer
capabilities. Here, contacts would contact a
distinguished server that would search for the best
possible source of the requested data and then direct
the client to the corresponding server. Should that
server become unavailable, the client is always free to
launch another search.
Because traditional client-server interactions and
peer-to-peer model are incorporated in the same file
access protocol, it is possible to cover the full range
of file access architectures; maximizing the potential
for scalability. Indeed, xrootd has been successfully
deployed in a peer-to-peer environment; largely
because of the protocol’s ability to accommodate
different access models.

2.2.4 - File System Layer

The file system layer provides an implementation

independent view of a file system. It is at this layer

where peer-to-peer file-access decisions, if enabled,

are done. This allows uniform access in a variety of

situations. Additionally,

« Multiple requests for the same file are merged.

« Redundant file operations across multiple clients
are screened out.

 Idle files are closed.

This layer also provides file-based access control

based on the authentication information provided by

the protocol layer.

2.2.5 - Storage Layer

The storage layer provides the particular

implementation of a logical file system. Here, logical

file system operations are translated to specific
actions optimized to underlying storage. Some of the
enhancements provided by this layer are:

« Transparent access to multiple file systems. Here,
any number of file systems can be aggregated to
provide for a single view of storage. File system
aggregation allows one to increase the number of
actuators and provide greater flexibility in the
physical placement of files for increased
performance.

« Mass Storage System integration. Here, near-line



or off-line storage can be added to enhance the
capacity of on-line space. Files are transparently
staged and de-staged from on-line disk.

2.3 - The client side

The base of the fault tolerant and reliable behavior
of the architecture is defined in the communication
protocol and implemented in the client. The protocol
defines the behavior of the client in the case of
explicit redirection requested by the server (for
example it can redirect the clients somewhere else
because it is going off-line for maintenance) or
communication errors (a particular data server
crashed or unexpectedly closed a connection). In both
cases the client has to apply some rules in order to
launch a new search for the file and get redirected to
a new available host.
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The client is composed by three layers with
different tasks:
« the interface layer: here the methods dealing with
file access are defined;
the high level communication layer: here the
protocol directives are implemented, as well as the
policies related to fault tolerance, read caching and
read ahead;
the low level communication layer: here the
protocol packet structure is known, in order to
give the functionalities of:
> connection multiplexing;
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> raw data receiving and un-marshaling into an
internal message stream, in a parameterizable
asynchronous (using a queue and a reader
thread per physical connection) or synchronous
way;

> raw data marshaling and writing to the
connections through a socket wrapper layer. It
is such a kind of physical layer that performs
all socket-related operations like read/write,
socket polling to handle read/write timeouts,
connection and disconnection, connection
timeout detection;

» Socket errors handling.

3 - Benchmarks

In order to test the real-world performance of the
server, a series of BaBar analysis jobs were run
against a single file, allowing data to be served from
the file system memory cache and avoided disk-speed
anomalies that make performance results hard to
interpret. The CPU-intensive work in the analysis job
was removed to force the maximum possible request
rate from each client while preserving the original
data access pattern. Thus an “event” in this context
represents a bounded series of server transactions.
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Fig.6 - Throughput and resource consumption versus number of clients for
a single server

The red line in Fig.6 shows that the number of
events per second scales linearly with the number of
clients. The graph also shows that the rate of increase
unexpectedly slows after about 200 clients. This
effect is a benchmark induced aberration. The first
two hundred clients were each run on a dedicated
machine; after which up to two clients were run on
each machine. Running more than one client on a
machine adversely affected each client machine’s
performance by 9.7%. This loss of efficiency appears
as a deviation of the expected event rate.

4 - Future directions

While the system described in this work is already
being deployed for production use at many



computing centers used by the BaBar experiment,
many enhancements are possible as future work.

We must remember that Xxr oot d/ TXNet Fi | e
was born as a sophisticated and scalable data access
architecture, and its possible enhancements up to the
level of a full scalable and fault tolerant file system
must be compatible with the requisites of the huge
data repositories which are its main aim.

Future work will involve studying how non-
contiguous name spaces impact peer-to-peer message
passing performances and what kind of restrictions, if
any, need to be put into place to keep such a system
from showing bottlenecks due to an excessive
message exchange between peers.

Other tasks that will be started include gathering a
more precise knowledge about the performances of
the various possible architecture levels, from a single
server site to a big site with many load balanced
servers, up to a network of cooperating servers.

Since gathering real world performance measures
is a task which can be done in simpler deployments,
an interesting possibility is to calculate or simulate
the behavior of a complex system. The main
objective of such a task would be trying to acquire
knowledge about the behavior of complex multisite
deployments, interconnected by WANs and proxies.
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