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Abstract: - Starting from the narrow relationship between robust filtering and the design of robust filters to
fault detection, an approach for fault detection and diagnosis robust filter design in linear systems is
presented. The method consists on transforming the problem of robust detection of faults in a problem of
robust control based on Linear Matrix Inequalities (LMI). The transformation is obtained by means of the
design of a dynamic system (post-filter), which is obtained through the synthesis of robust controllers based
on LMI. Thus, performance index in H2, H∞, and multi-objective criteria (H2/H∞) can be obtained. This
formulation allows the application of any technique of robust control based on LMI’s, and the robust fault
detection and isolation is guaranteed.
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1 Introduction

Some important connections exist between robust es-
timation or filtering and fault detection and isolation
(FDI) robust filter design. In general, the problem
consists in designing an asymptotic stable dynamical
system (filter) able to cope with perturbations (rejec-
tion, for example) and uncertainties of the models,
[13].

In the robust estimation problem, the goal is to de-
rive an optimal estimate of the system state vector or
a linear combination of the states being aware of the
presence of perturbation and uncertainties (model).
For the robust H2-H∞ estimation problem, the H2

or H∞ norm of the transfer matrix from the pertur-
bations to the error estimation is lower than a pre-
specified level γ > 0: [11], [9].

Consider the following system:

Σ1





ẋ(t) = Ax(t) + B1ω(t)
z(t) = C1x(t)
y(t) = C2x(t) + Dω(t),

(1)

where x ∈ <n is the state, z ∈ <m is the signal to be
estimated from the measured signal y ∈ <p; ω ∈ L2

is a perturbation. The matrices A, B1, C1, C2 and
D are matrices of appropriate dimensions. The pair
(A,B1) is stabilizable and pair (A,C2) is detectable.

We are interested, in the first term, in to find a
dynamical system denoted by F , a filter, which allows
to obtain an estimate ẑ of z, where ẑ is the output
of the filter satisfying the following conditions: the
filter is asymptotically stable and the effect of the

perturbation on the estimation error is as small as
possible, [6, 8, 9, 11, 18]. This is, F is such that

• ẑ(t) = Fy(t).

• If the estimation error is ez(t) = z(t)− ẑ(t) and
ω(t) = 0, then limt→∞ ez(t) = 0.

• If the transfer matrix from ω to ez is denoted by
Hezω we want:

1. H2 framework: ||Hezω(s)||2 < µ, µ > 0.

2. In H∞: sup
0 6=ω∈L2

||ez||22
||ω||22

= ||Hezω||∞ < γ,

γ > 0.

Under the considered assumptions, an admissible
filter can be expressed as

FL

{ ˙̂x(t) = Ax̂(t) + L(y(t)− C2x̂(t))
ẑ(t) = C1x̂(t),

(2)

where L is a gain matrix to be designed. Optimal
solutions have been showed in [9, 11, 18].

On the another hand, for robust FDI filter design,
the first step consists in the generation of residuals
(fault detection), used in a second step for the diag-
nosis process (fault isolation). The residuals are gen-
erated by a dynamical system (filter) and are only
significative when the system is affected by a fault.
The input of this dynamical system is a measured
output and it has to be able to distinguish if the
qualitative changes on the system behavior are due
to perturbations, uncertainties or to faults, [5, 15].



The relations between the H∞ robust estimation
problem and FDI filter design has been investigated
in [5]. In this case the addressed problem is the fault
detection in presence of perturbations; the diagnosis
problem is considered in a second level and the fault
separation is obtained through a multiple filtering,
[12]. In [15] this relations are reformulated and an
FDI robust filter based onH∞ optimization approach
is obtained. In a same way, in [19] the robust fault
detection problem has been formulated as a model
matching problem in H∞, which is solved through
LMI’s.

A way to consider robustness in the FDI filter de-
sign can be defining a sensitivity measure which char-
acterizes the filter sensitivity regarding to the possi-
ble faults in comparison to the filter sensitivity re-
garding to perturbations.

Let us introduce

S2i =
||Hezνi

||2
||Hezω||2 ; or S∞i =

||Hezνi ||∞
||Hezω||∞ ;

where νi are the signals characterizing the faults, ω
is the perturbation and ez the estimation error. It is
clear that if for a given i, S2i or S∞i is significative,
this means that for fault i, the filter is more sensitive
to νi than to ω. In this context, it is necessary to
generate novel approaches to improve the sensibility
S2i or S∞i of the filters. The problem consists in de-
signing a filter which in some sense maximizes S2i or
S∞i: [5, 12, 15, 19]. It is also clear that the problem
can be formulated as a multi objective design prob-
lem and multiple filters are necessary in this case to
solve the fault isolation problem.

In this paper, a method is proposed for the de-
sign of a robust FDI filter. The particularity of the
approach is the use of a post-filter which in connec-
tion with the robust fault detection filter, obtained by
solving an H2-H∞ control design problem based on
LMI’s, which allows to solve simultaneously the fault
detection and diagnosis problems and where multi-
objective criteria can be formulated.

2 Robust filtering with post-
filter

The post-filter is a dynamical system whose input
is the innovation signal defined as the difference be-
tween the output and its estimate. We denote the
post-filter by Fp. We consider the filter FL defined
by:

˙̂x(t) = Ax̂(t) + L(y(t)− C2x̂(t))−Beue(t)
ẑ(t) = C1x̂(t); (3)

where ue(t) is the output of the post-filter Fp, and
Be is its input matrix of appropriate dimension.

The error dynamic is obtained manipulating
straightforwardly the filter equation (3). It is given
by (see Fig. 1 ):

ėx(t) = (A− LC2)ex(t) + (B1 − LD)ω(t) + Beue(t)
ez(t) = C1ex(t). (4)

First, we can note that if Be = −(B1 − LD) and
ue = ω, we can isolate completely the error from per-
turbation ω. The reconstruction of ω can be obtained
from (1), considering V = DT D non singular, by the
inverse system

ζ̇(t) = (A + B1V
−1DT C2)ζ(t)−B1V

−1DT y(t)
ue(t) = V −1DT C2ζ(t)− V −1DT y(t);

where ue(t) can be considered as an estimate of ω(t).
In this way, a good rejection level can be attained
and this is the pursued idea in the introduction of a
post-filter.

2.1 The post-filter design

In this case, the robust filtering problem is trans-
formed in a robust control problem. Introduce the
innovation signal

ey(t) = y(t)− C2x̂(t) = C2ex(t) + Dω(t);

and define the dynamical post-filter equation

Fp

{
ζ̇(t) = Apζ(t) + Bpey(t)
ue(t) = Cpζ(t) + Dpey(t),

(5)

where the matrices Ap, Bp, Cp, and Dp must be
designed. In closed loop we obtain




ėx(t) = (A− LC2 + BeDpC2)ex(t) + BeCpζ(t)+
(B1 − LD + BeDpD)ω(t)

ζ̇(t) = BpC2ex(t) + Apζ(t) + BpDω(t)
ez(t) = C1ex(t).

As one can see, it is possible to select now L and after
determine Ap, Bp, Cp, Dp, and Be such that

(
A− LC2 + BeDpC2 BeCp

BpC2 Ap

)

be asymptotically stable and ||Hezω||2 < µ or
||Hezω||∞ < γ. If Be = 0 we recover the previous
case. We can note that in some cases L = 0 leads to
a solution.

In summary, the problem to be solved is the design
of a post-filter Fp, whose output is ue. In this case
Be is a design parameter. Thus, if ue ∈ <q, where
1 ≤ q ≤ n, then Be ∈ <n×q.

Introduce the error equations:




ėx(t) = Ãex(t) + B̃1ω(t) + Beue(t)
ez(t) = C1ex(t)
ey(t) = C2ex(t) + Dω(t);

(6)



where Ã = A−LC2, and B̃1 = B1−LD. The problem
is to design a control ue obtained, from the output
ey, such that the H2-H∞ norm of the transfer matrix
from the perturbation ω to the controlled output ez

be minimum. This is typically a well known H2-H∞
optimal control design for which a solution is given
in [4, 7, 17]. Then, we have translated the filter-
ing problem to an H2 -H∞ optimal control problem,
where also the “control matrix” Be is a design param-
eter. The problem solution is a dynamical controller,
which defines the post-filter.

With this formulation, the transfer matrix Hezω(s)
is given by

Hezω(s) =




(
Ã + BeDpC2 BeCp

BpC2 Ap

) (
B̃1 + BeDpD

BpD

)

(C1 0) 0


 .

To design Fp, the two steps procedure is the follow-
ing:

• Design or choose L. Particular cases requires
that the matrix Ã has a particular structure, (for
example in the fault isolation problem).

• To solve a H2-H∞ optimal control problem for
the system (6), where the obtained dynamical
controller is the post-filter Fp. Here the matrix
Be must also be designed.

The proposed diagram of blocks is shown in the Fig-
ure 1.
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Figure 1: Post-filter scheme.

2.2 Post-filter design via LMI control

We consider the case of optimal controller synthesis
based on LMI, where the control matrix is a design
parameter. Introduce the dynamical system

ėx(t) = Ãex(t) + B̃1ω(t) + Beue(t)
ez(t) = C1ex(t) + D11ω(t) + D12ue(t) (7)
ey(t) = C2ex(t) + D21ω(t).

A controller by output dynamic feedback is given
by (5). Then, the closed loop system is given by

ėx(t) = Aex(t) + Bω(t), ez(t) = Cex(t) + Dω(t), (8)

where

A =
(

Ã + D̂C2 Ĉ
BpC2 Ap

)
, B =

(
B̃1 + D̂D21

BpD21

)
,

C = (C1 + D12DpC2 D12Cp) ,

D = D12DpD21 + D11;

and
Ĉ = BeCp, D̂ = BeDp.

Function transfer Hezω(s) is given by: Hezω(s) =[
A B
C D

]
.

2.2.1 H2 Formulation

In this case we must design Be and the controller
given by (5) such that ||Hezω||2 < µ, µ > 0. It is well
known that ||Hezω||22 < µ if and only if there exist
symmetric X > 0 such that, [2, 17]:

[
AX+ XAT B

BT −I
]

< 0,

[
W CX
XCT X

]
> 0,

tr[W] < µ, D = 0.

Proposition 2.1 We consider the system (7). That
system is stabilizable by a dynamic controller given by
(5), such that ||Hezω||22 < µ iff there exists symmetric
matrices of n order X > 0 and Y > 0; matrices
Q, L ∈ <n×n; matrices F ∈ <n×p, R ∈ <q×p, M ∈
<q×n, N ∈ <n×p ; and a symmetric matrix W ∈
<m×m satisfying the following LMI’s:



ÃX + XÃT + L + LT Ã + NC2 + QT B̃1 + ND21
(F)T YÃ + ÃT Y + FC2 + CT

2 FT YB̃1 + FD21
(F)T (F)T −I


 < 0,



W C1X + D12M C1 + D12RC2

(F)T X I
(F)T (F)T Y


 > 0,

tr[W] < µ, D = D12RD21 + D11 = 0.

Thus, the control matrix Be is given by

Be = LMT
(
MMT

)−1
.

The controller is obtained from
(
Ap Bp
Ĉ D̂

)
=

(
V−1 −V−1Y

0 I

) (
Q −YÃX F

L N

) (
U−1 0

−C2XU−1 I

)
,

CP =
(
BT

e Be

)−1
BT

e Ĉ, DP = R,

where V and U are non singular matrices satisfying
YX + VU = I.

Proof
The proof is based on the typical linearization proce-
dure of the matrix inequalities through the congru-
ence transformation and variable changes. ¥

In the particular case where the system is given
by (6), and D = 0, the obtained dynamic controller
represents the post-filter, which allows to attenuate
the perturbation effects in an optimal way.



2.2.2 H∞ Formulation

In this context we should design Be and the controller
(5) such that ||Hezω||∞ < γ, γ > 0.

From Bounded Real Lemma, it is well known that
||Hezω||∞ < γ iff there exists X > 0 such that, [2, 7]:



ATX+ XA XB CT

BTX −γI DT

C D −γI


 < 0.

Proposition 2.2 Let be the system (7). The dy-
namic controller given by (5) stabilizes that system
and ||Hezω||∞ < γ iff there exists symmetric ma-
trices of n order X > 0 and Y > 0; matrices
Q, L ∈ <n×n; matrices F ∈ <n×p, R ∈ <q×p

and M ∈ <q×n,N ∈ <n×p; satisfying the following
LMI’s:



ÃX + XÃT + L + LT Ã + NC2 + QT B̃1 + ND21 XCT
1 + MT DT

12
(F)T (YY) YB̃1 + FD21 CT

1 + CT
2 RT DT

12
(F)T (F)T −γI DT

11 + DT
21RT DT

12
(F)T (F)T (F)T −γI




< 0,

[
X I

(F)T Y

]
> 0,

where

(YY) = YÃ + ÃT Y + FC2 + CT
2 FT .

Then, the control matrix Be is given by

Be = LMT
(
MMT

)−1
.

The dynamic controller is obtained from
(
Ap Bp
Ĉ D̂

)
=

(
V−1 −V−1Y

0 I

) (
Q −YÃX F

L N

) (
U−1 0

−C2XU−1 I

)
,

CP =
(
BT

e Be

)−1
BT

e Ĉ, DP = R,

where V and U are non singular matrices satisfying
YX + VU = I.

Proof
In a similar way that in the previous case, the proof
is constructed from appropriate transformation and
changes of variables on the LMI’s. ¥

Thus, the post-filter dynamical with H∞ perfor-
mance criterions can be obtained. Similar procedures
allows to design the post-filter from multi-objective
criteria.

2.3 FDI Robust Filter Design based
on a post-filter

It will be considered the design of robust filtering
based on a post-filter to derive a robust detector of
faults.

The FDI robust filter design problem can be for-
mulated in the post-filter framework, [15]. Under
this formulation a dynamic system (post-filter) is ob-
tained applying the previous results on robust filter-
ing based on LMI’s, in order to generate the residues
and to separate the faults.

Some results on FDI filter design using LMI’s are
shown in [3, 12, 19], in which the problem of fault
separation is not systematically solved.

The robust filters synthesis based on post-filters
are obtained from previous results. In this case, the
system (1) is used. Then, for H2 and H∞ robust
filtering, the dynamic controller is given by

Ap = V
−1 (Q − FC2X)U

−1 +
(

ÃX + L −NC2X
)
U
−1 (9)

Bp = V
−1

F + N (10)

Ĉ = (L −NC2X)U
−1

, D̂ = N (11)

where V = −Y and U = X−Y−1.
The post-filter dynamic matrices Cp and Dp

are obtained choosing Be such that CP =(
BT

e Be

)−1
BT

e Ĉ and DP =
(
BT

e Be

)−1
BT

e D̂. In the
particular case where Be = In×n, then Cp = Ĉ,
Dp = D̂.

Based on post-filter formulation, we consider FDI
robust filter design. Let us consider the dynamic sys-
tem

ẋ(t) = Ax(t) + B1ω(t) + B2u(t) +
f∑

i=1

Liνi(t),

y(t) = C2x(t) + Dω(t) +
f∑

i=1

Miνi(t), (12)

where Li, Mi are the fault directions in the actuators
and sensors, respectively; νi(t) is a signal character-
izing the fault mode.

To detect the faults, it is necessary to generate re-
siduals obtained from the estimation of the following
signal:

z(t) = C1x(t),

using a state estimator. We want to minimize
||Hezω||2 or ||Hezω||∞, and to maximize ||Hezω||2 or
||Hezνi ||∞, for i = 1, . . . , f , where Hezνi are trans-
fer matrices from νi to ez. It is difficult to take si-
multaneously these requirements, [3, 13, 15, 16, 19].
The conditions ensuring that faults are detectable
and separable are given in [10, 14]. The FDI filter
synthesis is supported by that conditions.

For FDI robust filter design, the strategy of the
post-filter is applied, using the previous results for
H2-H∞ robust filtering . Thus, the following dynam-
ical for the estimation error is obtained:





ėx(t) = Ãex(t) + B̃1ω(t) + Beue(t)+∑f
i=1 (Li − LMi) νi(t)

ez(t) = C1ex(t)
ey(t) = C2ex(t) + Dω(t) +

∑f
i=1 Miνi(t).

(13)
The control matrix Be also is a design parameter
in order to derive a admissible control. Control sig-
nal ue is obtained from the Proposition 2.1 or the
Proposition 2.2. So, the post-filter allows to guar-
antee a performance level appropriate for the fault
robust detection.



The first step consists in selecting L in order to
guarantee the fault separability. The matrix Be is a
parameter of design. We must choose a structure for
Be in order to guarantee the solvability of theH2-H∞
optimal control problem. Results can be extended to
systems where the dynamic matrix is given by A(t) =
A0 +

∑g
i=1 ai(t)Ai. There, A0 is a stable matrix, Ai

are non destabilizing terms, and ai(t) ∈ L2, [3, 6].

3 Numerical example

Consider the following state equation

ẋ =




0 −102 0
181 −171 0
0 −1.12 × 10−2 0


 x +




0
4.44
0


 ω +




102
163
0


 u +




0
181
0


 ν1

y =
(

0 1 0
0 0 0.978

)
x +

(
0

0.978

)
ν2;

which is the model of a diesel engine actuator,
[1]. Two faults are considered: fault on the ac-
tuator or fault on the sensor. We suppose that

z =
(

0 1 0
0 0 0.978

)
x.

The first step consists in selecting L, we choose, in
order to obtain A−LC2 decoupled in relation to the
faults:

L =




−102 0
0 0

1.12× 10−2 10


 ;

and the dynamic of the estimation error is described
by:

ėx =




0 0 0
181 −171 0

0 0 −9.78


 ex +




0
4.44
0


 ω +




0
181
0


 ν1 +




0
0

−9.78


 ν2 + Beue

ez =
(

0 1 0
0 0 0.978

)
ex,

ey =
(

0 1 0
0 0 0.978

)
ex +

(
0

0.978

)
ν2

We can note that, in order to ensure the fault sep-
arability, one fault is associated to each output error.
To solve the “control problem” presented in the pre-
vious section, we assume ν1 = ν2 = 0. For the H∞
case, we consider that Be ∈ <3×3, then the following
results are obtained:

γ = 3.8280e− 07

Ap = 1.0e + 08



−0.0000 −0.1342 0
0.0000 −2.1035 0

0 0 −0.3866


 ,

Bp = 1.0e + 08



−0.0406 0
1.1883 0

0 −0.0084


 .

If Be = I3×3, then

Cp = 1.0e + 07



−0.0000 −0.5093 0
−0.0000 0.3455 0

0 0 −3.7019


 ,

Dp = 1.0e + 07



−0.4055 0
−3.0056 0

0 −0.0840


 .

The Figure 2 represents the frequency responses of
the transfer matrices from the fault to the estima-
tion error (Hezνi

) and from the perturbation to the
estimation error (Hezω). We can appreciate the sen-
sitivity of the filtering with respect to the faults in
relation to the perturbation. The perturbation is re-
jected.
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Figure 2: Singular values diagram: Hezν2 , Hezν1 ,
Hezω.

Figure 3 represents the estimation errors with the
perturbation and in presence of faults. Fig. 3 shows
the perturbation and a fault affecting the actuator at
t = 10s. The perturbation magnitude is important.
However, the fault is detected and isolated.

The fault sensor is present from t = 20s. Fig-
ure 3 shows that residues are significatives when the
faults occur at t = 10s and at t = 20s, and that each
residual is associated with a fault guaranteeing faults
separability. We can also note that the perturbation
is rejected.
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Figure 3: Filter responses in presence of faults and
perturbation.



4 Conclusion

An approach for robust filter design of fault detection
and isolation based on the optimal control problem
has been presented. The method is based on the
construction of a dynamical system called post-filter,
which is obtained solving an optimal control prob-
lem through of LMI’s, where the control matrix is
considered a design parameter.

The method is based on two steps. The first step
consists in designing a full state observer in a way
ensuring faults separability. In a second step, the
post-filter is designed to ensure asymptotic stability
of the error dynamic and rejection of the perturba-
tion. The fault detection and isolation problem thus
is translated in an H2-H∞ optimal control problem
which is solved using LMI’s machinery and multi-
objective criteria can be applied.
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