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Abstract: - In this paper an approach for robust anti-windup compensation design for PID controllers
based on the characterization of H2 and H∞ norms as Linear Matrix Inequalities (LMI) is presented. The
robustness is considered by assuring the closed loop performance, spite of unknown changes on the actuator
saturation limits. The stability and performance margins are evaluated from H2 and H∞ norms of the
controller output with respect to the actuator output transfer function, which are LMI restrictions. The
design of the robust compensation gain is assured by means of a parameter-dependent Lyapunov function
obtained from a convex optimization procedure with LMIs, which can be solved in polynomial time by
specialized algorithms.
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1 Introduction

In general, the controlled industrial processes present
actuator saturation problems. In control theory that
restriction is denominated the bounded control prob-
lem, which leads to consider methods and technics
that allow the practical installation of control sys-
tems.

On the other hand, the control systems can oper-
ate in multiple environments and with multiple ob-
jectives. Each specific situation defines the operation
mode, which can require a controllercommutation.
The modes commutation is the substitution in the
plant inputs, considering that the controller output
is replaced by another.

As a result of substitutions and limitations, the
plant inputs will be different to the controller’s out-
put. When this happens, the controller outputs don’t
drive the plant appropriately and the controller’s
states will be strongly updated, [8, 9]. This effect
is called Wind-Up. In global terms, the wind-up is
one inconsistency among the control input given to
the process and the internal states of the controller.
The adverse effect of the wind-up is a significant per-
formance deterioration, overshoots and even inesta-
bility, [9, 3].
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The wind-up problem can be handled by means of
compensation where, in a first stage, it is designed
the control system without taking into account the
restrictions; and in a second stage, some compensa-
tion scheme is found, with the purpose of minimizing
the limitations and commutations effect. The last
outlined focus has been denominated the anti-windup
bumpless transfer problem (AWBT), [8].

A general framework for the AWBT problem has
been presented in [8]. The development is based on
the paradigm of designing a linear controller, which
ignores the non linear inputs and incorporate AWBT
compensation in order to minimize those adverse ef-
fects due to any non linearity in the control input.

The main advantage of this design methodology
is that no restrictions are placed on the original lin-
ear controller design. The main disadvantage is that
although the linear controller and anti-windup com-
pensator both affect the closed-loop performance; so,
the effect of the linear controller on the performance
under saturation is completely ignored. In addition,
the possible changes of the saturation limits is not
considered, which can result very inconvenient.

In all solution cases for the AWBT problem by
compensation, it is required of one residual signal
obtained between the controller’s output and the ac-
tuator’s nonlinear output, [1, 3, 7, 8, 9, 11].



2 Problem formulation

In order to introduce the robustness problem for the
anti-windup compensation design; let us consider the
following benchmark model [4, 5]:

ẋ1(t) = −0.1x1(t) + 0.5σ(u1) + 0.4σ(u2)
ẋ2(t) = −0.1x2(t) + 0.4σ(u1) + 0.3σ(u2),
y1(t) = x1,

y2(t) = x2,

where the non-linear function σ(◦) denotes the actu-
ator saturation, which is defined by

σ(ui) =





uimin
if u(t) < uimin

u(t) if uimin
≤ u(t) ≤ uimax

uimax
if u(t) > uimax

, i = 1, 2, . . . , p
(1)

In this example, the bounded controls u1 ∈ [−3, 3]
and u2 ∈ [−10, 10] are considered. For satisfying
control objectives, a PID controller with anti-windup
compensation is designed, which is given by

ζ̇1(t) = r1 − x1 + e11[σ(u1)− u1]
+e12[σ(u2)− u2]

ζ̇2(t) = r2 − x2 + e21[σ(u1)− u1]
+e22[σ(u2)− u2] (2)

u1(t) = 10(r1 − x1) + ζ1,

u2(t) = −10(r2 − x2)− ζ2,

where r1, r2 are the set-points, and Ec =
(

e11 e12

e21 e22

)

is the compensation gain. According to [5], the cal-
culated gain corresponds to

Ec =
(

1.5 0.4
0.2 1.3

)
,

which satisfies the compensation requirements, just
as is shown in Figure 1, where, for r1 = 0.6 and
r2 = 0.4, the system outputs reach their references
in spite of the actuator saturation.

On the other hand, if the saturation limits for the
actuator change (for example, if u1 ∈ [−1, 1]) then
the closed loop system performance is not appropri-
ate, just as is shown in Figure 2.

Thus, it can’t be found robustness with respect
to saturation limits changes, which is typical in an
industrial processes control environment where the
actuator elements: control valves, hydraulic actua-
tors, etc., can be deteriorated for the intensive use,
parts obsolescence, construction materials degrada-
tion, among other aspects. Therefore, it is neces-
sary to design compensation mechanisms, in order
to guarantee some robustness characteristics, which
should consider changes in the actuator devices per-
formance.
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Figure 1: controlled Output using PI with compen-
sation.
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Figure 2: controlled system Output using PI with
compensation and changed limits.

In this order of ideas, let us consider the linear
system defined by

ẋ(t) = Ax(t) + Bσ(u)
y(t) = Cx(t), (3)

where x ∈ Rn are the states, u ∈ Rp are the controls
and y ∈ Rq are the outputs. The matrices A, B, C
have appropriate dimensions.

The AWBT compensation problem is formulated
from Figure 3, where, due to the limitations and/or
substitutions, a non linearity appears among the con-
troller’s output and the effective process input.
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Figure 3: Control System with Actuators Saturation.

The effective control input σ(u) is a non-linear
function of the controller’s output u(t).



In order to satisfy the control requirements, a PID
controller with compensation is considered, which is
given by

ζ̇(t) = e(t) + Ec[σ(u)− u]
u(t) = KIζ(t) + KP e(t), (4)

where e(t) = r(t)− y(t), KI corresponds to the inte-
gral action gain, while KP denotes the proportional
action gain. Ec, as it has already been mentioned,
represents the compensation gain.

Thus, the system in closed loop is given by

ẋ(t) = Ax(t) + Bσ(u)
ζ̇(t) = −Cx(t) + r(t) + Ec[σ(u)− u] (5)
y(t) = Cx(t),
u(t) = −KP Cx(t) + KIζ(t) + KP r(t),

which is equivalent to

ẋ(t) = (A−BKP C)x(t) + BKIζ + BKP r(t)
+B[σ(u)− u]

ζ̇(t) = −Cx(t) + r(t) + Ec[σ(u)− u] (6)
y(t) = Cx(t),
u(t) = −KP Cx(t) + KIζ(t) + KP r(t).

As it is well known, the gains KP and KI are de-
signed without considering the actuator saturation,
while the effect of the saturation on the performance
in closed loop is minimized by means of the selection
of the gain Ec. The compensation have effect when
the signal ϑ = σ(u) − u is not null, and the addi-
tional feedback, see the Figure 4, is incorporated in
order to make that signal be null, again, through the
upgrade of the control signal u, which will be inside
of the actuator saturation limits. When the signal
ϑ is different to zero, its effect on the performance
of the closed loop system can be studied from the
perspective of analysis of the subjected systems to
external disturbances. In this case, the disturbance
signal is, in fact, the presence of the actuator satura-
tion. Such analysis corresponds to the minimization,
in some sense, the effect of the disturbance signal on
the control signal u. So, let us consider the transfer
function of the controller output u with respect to
the residual signal, or perturbation signal, ϑ. This is,

if θ(t) =
(

x(t)
ζ(t)

)
, then

PID
CONTROLLER

SYSTEM

+-

+ -

r(t)
u(t) y(t)

σ(u)

Figure 4: Control System with Saturation of Actua-
tors.

θ̇(t) = Aθ(t) + Bϑ

u(t) = Cθ(t) + Dϑ, (7)

where

A =
(

A−BKP C BKI

−C 0

)
, B =

(
B
Ec

)
,

C = (−KP C KI) , D = 0.

Therefore, the transfer function Huϑ(s) is given by

Huϑ(s) =
[
A B
C D

]
= C(sI− A)−1B+ D.

The main condition to be satisfied is the closed
loop stability, even under the saturation situation.
It is guaranteed by means of the global stability of
the bounded input system, that which, in case that
this problem concerns, is guaranteed by means of the
compensation gain design. This way, the synthesis
problem consists in designing Ec that guarantees the
effectiveness of the compensation under some robust
stability condition in perturbed systems. Therefore,
the compensation gain design problem can be focused
starting from the norms H2 y H∞.

Problem: Given the dynamic system (3), to design
the compensation gain Ec for the controller (4), such
that:

1. The closed loop system (7) be asymptotically sta-
ble.

2. The effect of signal ϑ on the control signal u be
minimum, in some sense.

The closed loop stability is satisfied, in first place,
for the appropriate selection of the PID controller
gains. The second condition, lied to the bounded
input systems stability, will allow the compensation
under global stability. In this case, it is necessary to
design the compensation gain in order to guarantee
the closed loop stability and to minimize the effect of
the disturbance signal ϑ on the control signal u when
the saturation becomes present.

2.1 A framework in H2

In this case, we should design Ec such that ||Huϑ||22 <
µ, for all µ > 0. The following lemma is a well known
result, which completely characterizes the H2 norm
constraint through LMI [2, 10].

Lemma 2.1 The inequality ||Huϑ||22 < µ holds if,
and only if, D = 0 and there exists symmetric matri-
ces X > 0, and W such that

[
AX+ XAT B

(◦)T −I
]

< 0,

[
W CX

(◦)T X

]
> 0,

tr(W) < µ.
(8)

is feasible.



Proposition 2.1 Consider the system defined by (3)
and the PID controller with compensation given by
(4). The controlled system is asymptotically stable
with robust compensation, because ||Huϑ||22 < µ if,
and only if, there exist symmetrical matrices X > 0
andW > 0, and the matrix Q, such that the following
LMIs are satisfied:
[
AX+ XAT M1B + M2Q

(◦)T −I
]

< 0,

[
W CX

(◦)T X

]
> 0,

tr(W) < µ;
(9)

where M1 =
(
I
0

)
and M2 =

(
0
I

)
, have appropriate

dimensions.
The compensation gain matrix Ec is given by

Ec = Q. (10)

Proof
The proof is direct. The first inequality in (8) is re-
written starting from the design variable Ec, using
the variables change Q = Ec. ¥

This formulation guarantees the stability in the
case of saturation with a minimum effect on the con-
troller’s output signal.

2.1.1 Extended H2

Proposition 2.2 Consider the system defined by (3)
and the PID controller with compensation given by
(4). The controlled system is asymptotically stable
with robust compensation, because ||Huϑ||22 < µ if,
and only if, there exist symmetrical matrices X > 0
and W > 0, and the matrices F, G, and Q, satisfy
the following LMIs are satisfied:


AF+ FTAT X− FT + AGT M1B + M2Q

(◦)T −(GT +G) 0
(◦)T (◦)T −I


 < 0,

[
W CG

(◦)T GT +G− X
]

> 0, tr(W) < µ;

(11)

where M1 =
(
I
0

)
and M2 =

(
0
I

)
, have appropriate

dimensions.
The compensation gain matrix Ec is given by

Ec = Q. (12)

Proof
Consider Q = Ec. As B = M1B + M2Q, then the
first inequality in (8) is obtained multiplying the first
inequality in (11) on the left by G, and on the right
by GT , where

G :=
(
I A 0
0 0 I

)
.

On the other hand, assume that the inequalities
(11) are feasible. Therefore GT +G > X > 0. Hence,
this implies thatG is non-singular. Since X is positive
definite the inequality (X−G)TX−1(X−G) ≥ 0 holds.
Then, GTX−1G ≥ G + GT − X can be established,
which yields [

W CG
(◦)T GTX−1G

]
(13)

Recalling thatG is non-singular, then multiplying the
inequality (13) on the right by M := diag[I,G−1X]
and on the left by MT , the second inequality in (8)
is hold. ¥

2.2 A framework in H∞
In this environment, we want to design Ec such that
||Huϑ||∞ < γ, for all γ > 0. It is well known that the
H∞ norm has a characterization as LMI constraints
according to the Bounded Real Lemma [2, 10]:

Lemma 2.2 The inequality ||Huϑ||∞ < γ holds if,
and only if, there exist a symmetric matrix X, such
that 


ATX+ XA XB CT

(◦)T −γI DT

(◦)T (◦)T −γI


 < 0. (14)

Starting from 2.2, it is possible to extend that char-
acterization of the ∞-norm for systems by means of
using parameters dependent Lyapunov’s functions.
This formulation has the advantage that is less con-
servative [6].

Lemma 2.3 The inequality ||Huϑ||∞ < γ holds if,
and only if, there exist symmetric positive Y, and
appropiate dimension matrices F and G such that



AF+ FTAT Y− FT + AGT B FTCT

(◦)T −(G+GT ) 0 GC
(◦)T (◦)T −γI DT

(◦)T (◦)T (◦)T −γI


 < 0.

(15)

Proof
Consider Y = X−1. The inequality (14) is re-written
using the congruent transformation T := diag[Y, I, I];
this is, the inequality is multiplied on the right by T ,
and on the left by T T . Thus, the obtained result is
equivalent to the one that is obtained of the multi-
plication, on the left, the inequality (15) by F , and
on the right by FT , where

F :=



I A 0 0
0 0 I 0
0 C 0 I




¥



Proposition 2.3 Consider the system defined by (3)
and the PID controller with compensation given by
(4). The closed loop system is asymptotically stable
with robust compensation, because ||Huϑ||∞ < γ if,
and only if, there exist a symmetrical matrix Y > 0,
and F, G, and Q matrices , such that the following
LMI is satisfied:




AF + FT AT Y − FT + AGT M1B + M2Q FT CT

(◦)T −(G + GT ) 0 GC
(◦)T (◦)T −γI DT

(◦)T (◦)T (◦)T −γI


 < 0. (16)

where M1 =
(
I
0

)
and M2 =

(
0
I

)
are matrices with

appropriate dimensions.
The compensation gain matrix Ec is given by

Ec = Q. (17)

Proof
The demonstration is direct. Consider Q = Ec. Im-
mediately, the matrix B is expressed from its compo-
nents using the variables change. ¥

The performance index based-on theH∞ norm cor-
responds to the L2 gain of the controller output signal
with respect to the actuator output signal.

3 Numerical Example

Let us consider the example presented in the first
part. We want to calculate the compensation gain
matrix, in both cases H2 and H∞. At this time, we
use the LMI toolbox from Matlabr in order to formu-
late the LMIs and to obtain their numeric solution.

1. In the H2 case, the following results were ob-
tained: performance level µ = 5.9560e(−008),
and

Ec =
(

15.0000 40.0000
12.0000 30.0000

)

2. For the H∞ case, the results are: γ =
1.3639e(−005), and

Ec =
(

15.0000 40.0000
12.0000 30.0000

)

For the time analysis, a simulation was made for
the H∞ case, where the u1 ∈ [−1, 1] situation was
considered. Figure 5 shows the results in the differ-
ent cases: without saturation, with saturation and
without compensation, and with compensation.

Just as it can be observed, the compensation guar-
antees the system closed loop performance, in spite
of the change in the saturation limits. The tempo-
rary performance for the case without saturation and
with compensation are similar, varying only the time

response. On the other hand, the situation where
compensation is not given the design objectives are
not reached due to the saturation, such as is observed
in the figure (c) where the signal remains in the sat-
uration limit. This is the same situation that is pre-
sented for the case where doesn’t have robustness in
the synthesis of the compensation gain, as can be
seen in Figure 2. Thus, it is important to consider
some robustness characteristics for designing the gain
compensation matrix.

4 Conclusions

An approach for robust anti-windup compensation
design for PID controllers has been presented. The
technique is based on H2 and H∞ norms charac-
terization as Linear Matrix Inequalities (LMI). The
robustness analysis is considered on the closed loop
transfer matrix, of the controlled output respect to
the difference between the actuator output and con-
troller output. The performance is assured in spite
of unknown changes on the actuator saturation lim-
its. The stability and performance margins are eval-
uated from H2 and H∞ norms of the transfer ma-
trix, which are LMI restrictions. The robust com-
pensation gain design is obtained by means of a
parameter-dependent Lyapunov function (less con-
servative), which allows to describe a convex opti-
mization problem. This problem is presented from
LMIs, which can be solved in polynomial time by
specialized algorithms.
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[1] K. J. Åström and L. Rundqwist, Integrator
windup and how to avoid it, 1989, pp. 1693–
1698.

[2] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakr-
ishnan, Linear matrix inequalities in system and
control theory, SIAM, 1994.

[3] P. J. Campo and M. Morari, Robust control
of processes subject to saturation nonlinearities,
Comp. & Chem. Enginnering 14 (1990), 343–
358.

[4] Yong-Yan Cao, Zongli Lin, and David G. Ward,
An antiwindup approach to enlarging domain of
attraction for linear systems subject to actuator
saturation, IEEE TRANSACTIONS ON AU-
TOMATIC CONTROL 47 (2002), no. 1, 140–
145.

[5] , H∞ antiwindup design for linear sys-
tems subject to input saturation, J. of Guidance,
Control, and Dynamics 25 (2002), no. 3, 455–
463.



[6] P.J. de Oliveira, R.C.L.F. Oliveira, V.J.S. Leite,
V.F. Montagner, and P.L.D. Peres, H∞ guaran-
teed cost computation by means of parameter-
dependent lyapunov functions, Automatica 40
(2004), 1053 1061.

[7] R. Hanus and M. Kinnaert, Control of con-
strained multivariable systems using the conti-
tioning technique, Proc. Amer. Control Confer-
ence, 1989, pp. 1711–1718.

[8] M. V. Kothare, P. J. Campo, M. Morari, and
C. N. Nett, A unified framework for the study
of anti-windup designs, Automatica 30 (1994),
no. 12, 1869–1883.

[9] M. Morari, Some control problems in the pro-
cess industries. essays on control: Perspectives
in theory and applications, Birhauser, 1993.

[10] C. Scherer, P. Gahinet, and M. Chilali, Multiob-
jective output-feedback control via LMI optimiza-
tion, IEEE Trans. Automatic Control 42 (1997),
no. 7, 896–911.

[11] A. Zheng, M. V. Kothare, and M. Morari,
Anti-windup design for internal model control,
Tech. Report CIT-CDS Technical Memo, Cal-
Tech, 1993.

0 10 20 30 40 50
−5

0

5

10

u(
t)

(a)

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

y(
t)

(b)

0 10 20 30 40 50
−10

−5

0

5

σ(
u)

(c)

0 10 20 30 40 50
−40

−30

−20

−10

0

y(
t)

(d)

0 10 20 30 40 50
−4

−2

0

2

Time t (s)

σ(
u)

(e)

0 10 20 30 40 50
−0.2

0

0.2

0.4

0.6

Time t (s)

y(
t)

(f)

Figure 5. Actuator output and System output: (a)-(b) Without saturation. (c)-(d) With saturation and
without compensation. (e)-(f) With compensation.


