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Abstract: - In this paper, an innovative robust adaptive tracking control method for robotic systems with 
unknown dynamics using a nonlinearly parameterized Additive Recurrent Neural Network (ARNN) is 
proposed. The ARNN uses the Gaussian Radial Basis Functions (GRBF) as activation functions. Through 
this method the training laws of all GRBF parameters are determined. Additionally, the system is augmented 
with sliding control to offset the higher-order terms in the Taylor series of RBF output. Such a development 
is necessary for the linearization of the GRBF with respect to the parameters and, therefore, to obtain the 
training laws of the ARNN. The study of the total system stability is based on the Lyapunov’s theory. 
Finally, the effectiveness of the ARNN-based control approach is verified through simulations on a six-link 
robot manipulator. 
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1   Introduction 
In recent years there has been increasing interest in 
the use of neural networks for the identification and 
control of nonlinear systems. The neural network 
possesses powerful approximation capabilities and 
can therefore be used for identification of unknown, 
or rather partially unknown, nonlinear dynamic 
systems. In the last decade, the neural architectures 
used for identification and control are the MLP 
(MultiLayer Perceptron) networks and the RBF 
(Radial Basis Function) networks. Their application 
range goes from the indirect adaptive control [7], 
with heuristic approach, to the direct adaptive 
control [9], [12], and [13].  

The RBF network is more suitable for on-line 
adaptation, being insensitive to the order of 
presentation of the signals used for adaptation. They 
also require less computation time for learning and 
have a more compact topology [8]. With the use of 
Gaussian activation functions, the RBF network 
forms a local representation (hyper-ellipsoids), as 
opposed to the sigmoidal MLP (hyper-planes), 
where each basis function responds only to inputs in 
the neighbourhood of a unit center and the spread is 
determined by the unit variance.  

The first to have introduced the use of neural 
networks in dynamical systems identification and 
control were Narendra and Parthasarathy in [7]. 
They employed static MLP networks connected 
either in series or in parallel with linear dynamical 
systems, where the synaptic weights were updated 

through a gradient learning algorithm. However, the 
stability of the total system was verified only 
through results of simulations. Sanner and Slotine 
 [13] incorporate Gaussian radial basis function 
neural networks with sliding mode control and 
linear feedback, to formulate a direct adaptive 
tracking control architecture. Besides, they 
developed a systematic procedure for determination 
off-line the variances and centers of the basis 
functions that censure the network approximation 
accuracy to be uniformly bounded everywhere 
within a relevant and finite region of state space. 
However, in the practice, the RBF networks require 
a very high number of hidden neurons to 
approximate functions in wide intervals. Polycarpou 
e Ioannou [9] employed Lyapunov stability theory 
to develop stable adaptive laws for identification 
and control of SISO dynamical systems with 
unknown nonlinearities, using various neural 
network architectures. Lewis and Fierro [3] applied 
the MLP networks with a robustifying control 
signal, to guarantee tracking performance in robotic 
systems. They have also shown that the 
backpropagation rule alone is insufficient to assure 
stability of the whole system. Rovithakis and 
Christodoulou [11] presented indirect and direct 
adaptive control schemes based on a recurrent 
neural network model of the unknown system. As 
activation functions were used the logistic 
functions. Also in this case the Lyapunov technique 
was used to provide answers to the problems of 
stability, convergence, and robustness.  
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Generally, the most of above works impose 
restrictions on the forms of allowable nonlinearities 
and, furthermore, the control laws need the a priori 
knowledge of the upper bound on the modelling 
error and on the norm of the optimal parameter 
values of the used neural network. However, in 
many practical cases such bounds may not be 
known. A recent result, obtain in [1], solves this 
type of problem. 

On the other hand, the control of a robotic 
systems is currently of great interest when using 
neural network to approximate the unknown 
dynamics in the known model of robotic systems 
[6].  

This paper deals with a recurrent neural network-
based controller for motion dynamic control of 
robot manipulators. We present a feedback adaptive 
neurocontroller for robots which combines ARNN’s 
with adaptive and robust control techniques. The 
ARNN uses the Gaussian radial basis functions 
(GRBF) as activation functions. We propose a new 
method in order to determine the training laws the 
parameters of the dilation (variance) and translation 
(center) of GRBF which allow to reduce the 
identification and control error for tracking tasks of 
time trajectories. Additionally, the system is 
augmented with sliding control to offset the higher-
order terms in the Taylor series of RBF output. Such 
a development is necessary for the linearization of 
the GRBF with respect to the parameters and, 
therefore, to obtain the training laws of the ARNN. 
The study of the total system stability is based on 
the Lyapunov theory. In order to verify the 
effectiveness the ARNN-based controller, 
simulation studies were carried out using a PUMA-
560 model robot. Simulation results showing the 
practical feasibility and performance of the 
proposed approach to robotics are given. 

This work is organized as follows. Section II 
presents the modelling of the robot dynamics by 
using an ARNN-based identification scheme. In 
Section III, the problem of motion adaptive control 
of rigid robot manipulator is stated and formulated, 
and ARNN-based feedback robust adaptive 
controllers and stability results are given. Finally, 
Section IV shows the simulation results for the 
tracking adaptive control problem. Conclusions are 
given in Section V. 
 
 
2   Modeling the Robot Manipulator 
Dynamics by using an ARNN 
 
2.1  Robot manipulator dynamics 
The dynamics of an n-link manipulator can be 

described in the Lagrange form: 

τ+ + + =�� � � �( ) ( , ) ( ) ( )dM q q V q q q G q F q ,         (1) 

where  consists of the joint variables, q τ  is 
generalized force vector, M q  is the symmetric 
inertia matrix, V q  is the matrix of Coriolis and 
centrifugal effects, the vector G q  denotes the 
gravity terms and F q  is the friction vector. The 
inertia matrix is positive-definite.  
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In order to design a suitable controller, we define 
following auxiliary variable: 

                            = + Λ�aq q ,                               (5) q

where Λ  is positive defined diagonal matrix. The 
system (3) can be rewritten as: 

                 = +� ( ) ( )a a aq B qq F ,                        (6) u

where  and B  are n-dimension vector functions. 
Now we only assume the outputs q  and q  are 
available. 
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2.2   Additive recurrent neural network  
We consider the dynamic model of the additive 
recurrent neural network as shown in Fig.1. Let n  
be the number of the state variables. The filter input 
of the Fig.1 is: 

+ˆ ˆWx Hu ,                                  (7) 

where  is the potential vector,  is the input 
vector, W  is the matrix of synaptic weights, and H  
is the diagonal gain matrix. Let v  be the input 
potential vector to the vector of nonlinear element 

x
ˆ

u
ˆ

( )⋅g . Then, it is possible to express the dynamic of 
the order first filter through the following 
differential equation: 

+�v Kv ,                                    (8) 

where  is a diagonal positive define gain matrix. 
Given the activation potential vector v , we 
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determined the ARNN output using the nonlinear 
relation: 

= ( )x g v ,                                   (9) 

where 1 2 ng g  is a vector of 
continuous nonlinear function and then 
differentiable, with elements 

( )⋅ = "[ Tg g ]

( )⋅gi  so-called 
activation functions. It is possible to define the 
dynamic of the network through the following 
system of coupled differential equations of the first 
order: 

= − + +� ˆ ( )v Kv Wg v Ĥu ,                     (10) 

The model described by the equation (10) is called 
additive model; this terminology is used to 
distinguish it from the multiplied models where W  
depends from x . 

ˆ

In this paper, we consider an ARNN that uses as 
activation potential the Gaussian radial basis 
function (GRBF). The ARNN model is described 
from (10), with: 

( )= = − − 2 2ˆ ˆ ˆ ˆ( ) ( , , ) expi i i i ig v g v c a v c ai

]]

,      (11) 

where  and a  are, respectively, the vector 
representing the centers and the value representing 
the variance associated to the i-th element of the 
vector of activation functions. Then, the parameters 
characterizing the vector of activation functions are 

and , that is 
. It has been proven [8] that the 

GRBF network satisfies the conditions of the Stone-
Weierstrass theorem and is capable to uniformly 
approximate any real continuous nonlinear function 
on the n-dimensional compact set. This involves 
that GRBF networks are universal approximator. 
How it is possible to observe, the vector of the 
GRBF is nonlinear with respect to the parameters ic  
and i , we thus call it a nonlinearly parameterized 
approximator. 
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On the basis of the results found in the previous 

section, the real robotic system (6) can be expressed 
as: 

On the basis of the results found in the previous 
section, the real robotic system (6) can be expressed 
as: 

= − + + + ∆� ( , , )a a aq Kq Wg q c a Hu L ,          (12) 

where ,c ,a ,H  are the optimal estimation 
values. At last, 

W
∆L  is the modelling error. We note 

that they are defined as the values of the parameters 
that correspond to minimum modelling error.  
Assumption 1. The optimal estimation values and 
the modelling error are bounded in norm.               □ 

Defined the identification error 
= −( ) ( ) ( )e t q t v ta  and using the equations (10) and 

(12), the dynamic of the identification error can be 
written: 

= − + − + + ∆�� ˆ ˆ ˆ( , , ) ( , , )ae Ke Wg q c a Wg v c a Hu L ,(13) 

where = −� ˆH H H

( ,a

. In order to obtain an adaptive 
law for the parameters, it is convenient to consider 
the first order approximation of the vector as 
activation functions. Using the Taylor series 
expansion of g q  around the point ( ,  we 
obtain: 

, )c a ˆ )̂c a
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where = −� ˆc c c , = −� ˆa a a  are the estimates of the 
optimal centers and variances respectively, and 

a  represents the higher order terms of the 
expansion. The Jacobiane matrices present in (14) 
are given from: 
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Fig. 1. Scheme of an ARNN. 
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Now, by replacing (14) in (13) we obtain:                         
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where = −� ˆW W W represents the synaptic weight 
estimation error, and ∆E  represents the disturbance 
terms expressed as: 



the (24) is modified to: ∆ = + − +
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 Lemma 1. Given the disturbance terms , there 
exist a vector l l , such that: 

∆E
= 0 1 2 3[ , , , ]Tl l l

∆ ≤ + + + =0 1 2 3
ˆ ˆ ˆ ˆ( , , )TE l l W l c l a l sW c aˆ ˆ ,  (20) 

3   ARNN-Based Motion Adaptive 
Control 
In this section, we determine a control algorithm for 
tracking tasks of time trajectories. The objective is 
to determine the control law u t  such that the state 
of the first order system (6) can track a reference 
trajectory given by:  

( )where =ˆ ˆˆ ˆ ˆ ˆ( , , ) [1, , , ]Tc a W c asW . 
 
Proof. Using (14), since the GRBF and partial 
derivatives are superiorly and lowerly bounded, the 
following inequality is verified: = + Λ�r dq q qd

, , )]

,                           (27)  

where d  is the desired trajectory of the system. 
If  is invertible, we consider the following input 
control: 

( )q t
Ĥ

≤ + +� � � �0 1 2( , , )O x c a d d c d a ,              (21) 

where d0, d1 and d2 are positive constants. Given the 
disturbance terms (19), using (21), we obtain: 
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Note that the derivation operations on the desired 
trajectory don’t present any problem, after this last 
one is analytically well known. The error between 
the estimated state  and q t  is given as: ( )v t ( )r

Considering the assumption 1, opportunely picking 
up the constant terms present in (22), we obtain (20)
.  Q.E.D. 

= −( ) ( ) ( )re t v t q tr ,                         (29) 

We consider the Lyapunov function candidate: 
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and is necessary obtaining the dynamic equation of 
the tracking error = −�( ) ( ) ( )q t q tdq t  to evaluate the 
property of convergence of the real system state on 
the desired state. We note that, the tracking error 
can be obtained as solution of: 

                                + Λ = +�� � re eq q .                        (30) 

Finally, by differentiating (29) and substituting the 
(28) in (10) we obtain: where α α α α, , ,0 1 2 3  are positive constants. 

Differentiating (23) with respect to the time and 
using (18) we obtain: 
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Theorem 1. Consider the nonlinear system of the 
first order (6). We assume that the adaptive control 
law is given by: 

= +au u us ,                                 (32) 

with: 

= − T̂
s

eu l s
e

.                               (33) 

Furthermore, we assume that the training laws of 
the parameters are given by: 
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where α α α α α, , , ,
�( )

0 1 2 3 4  are positive constants. Then, 
the tracking error q t  asymptotically converges to 
zero and the estimate error of the parameters is 
uniformly bounded. 
Proof. We consider the Lyapunov function 
candidate: 

α
= + + ≥� �

4

1 1 0
2 2

T T
e r rV V e e l l ,              (35) 

where the scalar function V  is defined by (23). 
Differentiating (35) with respect to time, using (31), 
(32), (34) and observing: 

= − + ∆ +� (T T
sV e Ke e E u ) ,                (36) 

we obtain: 

= − − + ∆ + −� ( )T T T T
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Substituting the robustifying term (33) in (37) we 
get: 

= − − + ∆ − −� ˆT T T T T
e r rV e Ke e Ke e E l s e l s e , (38) �

In the identification phase, we consider the 
ARNN described by the equation (10) with = 6n , 
and the input is given by sinusoidal functions. The 
parameters of the ARNN are trained according to 
the equations (25) without requiring a preliminary 
offline learning phase. The sampling time is fixed to 
the value of 0.1 ms. The initial values of all the 
tunable variables are small random numbers, and set 
of the design constants are 

= (50,100, 50, 40,50, 40)K diag , and  α = 10i  with 
= …0, , 4i . Note that high gain is required on joint 

2 in order to counter the significant disturbance 
torque due to gravity.  

since: 
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The (38) is bounded by: 

≤ − − + − −

≤ − −

� �ˆ

.

T T T T T
e r r

T T
r r

V e Ke e Ke l s e l s e l s e

e Ke e Ke
  (40)               q t        =( ) [0.5 sin( ), 0.5 sin( ), 0.5 sin( ),

4 4

0.2 cos( ), 0.5 sin( ), cos( )] ,
4 4 4

d

T

t t

t t t
     (43) 

By (40) we obtain that all the error are bounded. 
Therefore by integrating (40) we have: 

τ τ τ
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which implies that 2re e . By (18) and (31), 
since the desired trajectory dq t  and the time 
derivative they assume bounded, we obtain that 

∞r . Then, using the Barbalat’s Lemma, the 
identification error e t  and the reference error 

 asymptotically converge to zero, that is 
→∞t  and li .  From (30), 
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Remark 1. We note that, the tracking error q t  
asymptotically converges to zero also in presence of 
disturb torques on the control input, that is: 

�( )

τ τ+ + + +�� � � �( ) ( , ) ( ) ( )d dM q q V q q q G q F q = ,     (42) 

where τd  is the disturb torque vector which act on 
the mechanical systems. The disturb torque vector is 
bounded in norm. 
 
4   Simulation Experiments 
To show the performance of the proposed ARNN-
based adaptive controller, as well as the stability 
properties obtained in the preceding theoretical 

development, a simulation study has been carried 
out for the PUMA-560 robot system. This was 
possible using the SIMULINK, a simulation toolbox 
put at disposal from MATLAB. The mathematical 
model of the robot manipulator used is given in [2]. 
Our algorithm can be separated into two phases: the 
first takes into consideration only the identification 
of the system, and the second, in case of success of 
the first, determines the control laws that allow the 
system to tracking a desired trajectory. 

In the control phase the problem is to develop a 
control law such that the state of the system (1) can 
track a desired trajectory given by: 

4
t

and the initial conditions are: 
π

=(0) [ , 0, 0, 0, 0, 0]
4

Tq , and q .           (44) =�(0) 0

Applying the results found in the previous section, 
we obtain the feedback linearising control based on 
the ARNN obtained in the phase of identification. 
To ensure the convergence of the tracking error to 
zero, the control law (28) is augmented by a sliding 
mode control term (33). In practical robotic 
systems, the load may vary while different tasks are 
performed and some neglected nonlinearities may 
appear as disturbances at the control inputs. 
Therefore, the robustness of the proposed control 
methodology for robots has practical value. The 
initial values of the variables present in (34) are 
small random numbers and the design constants are 
the same as in identification phase. 

This simulation examines the approximation 
capability, tracking performance and the high 
dimension problem of the ARNN-based controller. 
The simulation results show that the proposed 
controller with adaptive update law can overcome 
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