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Abstract: -  This paper presents a new stochastical real-time LPC (Last Principal Component) algorithm to 
estimate single-input-single-output (SISO) and multiple-input-multiple-output (MIMO) varying time models 
from  input output data clusters of non stationary black boxes. Each of data clusters is on a time window. An 
application to estimate the control system model of a planar manipulator is developed. In fact many 
mathematical models of physical systems are non stationary such as industrial manipulator model. A real time 
estimation algorithm via stochastical LPC algorithm and an appraiser called “finite state machine” is then 
described. For every data cluster the finite state machine updates the parameters of a Gaussian varying time 
model via an optimality design criterion that maximises the Likelihood function. The estimated steady-state 
parameters are constant values. By applying to two links planar manipulator, numerical tests of simulation in 
Matlab 6.5 demonstrate the effectiveness of this algorithm. 
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1   Introduction 
Fundamental objective of Principal Component 
Analysis (PCA) [6,7,10,11] is projecting a set of 
input output data of a system into a lower 
dimensional space that accurately characterizes the 
state of the process. This can be developed from 
synthesis of data which are contained in a matrix by 
linear combinations of observed variables (principal 
components) which are able to reproduce  variability 
of observed variables. In [4], [13], PCA is 
formulated within a maximum-likelihood framework 
and the subspace is estimated in Maximum 
Likelihood sense using a probabilistic generative 
model. Considering only the last principal 
components, PCA algorithm is called "Last Principal 
Components" (LPC). "Total Least Square" (TLS) 
algorithm [1], [5] is starting point of LPC algorithm. 
While TLS algorithm can be only applied to 
identification of static systems, LPC algorithm can 
be also applied to on-line identification of dynamic 
systems. In the world of industrial robotic 
applications [12] a Proportional-Derivative (PD) 
controller is often applied; a PD controller doesn’t 
feel the effect of possible changes of load. In [9] an 
PD control for planar manipulators with two link and 
non-flexible joints is proposed. In every case, the 
problems consist in uncertainties of the model [9] as 
for example the friction torques. Therefore in 
literature [2,3], [8] there are techniques of 
identification based on training and adaptive-training 
algorithms using neural networks. In [11] a 

combination between multivariate statistical process 
control based on PCA algorithm and an automatic 
classification algorithm is developed to application 
in wast water treatment plant and have been created 
a model that describes the batch direction. In [10] is 
proposed a stochastical estimate algorithm based on 
PCA/LPC to estimate the nonlinear  model of a 
planar manipulator. But in [10] the algorithm is off-
line and the mathematical model of a planar 
industrial manipulator is non-stationary. Therefore 
an real time algorithm LPC must be developed. 

In this paper is developed a new real-time 
stochastical LPC algorithm applied to estimate SISO 
and MIMO varying time models from data clusters 
of non stationary black boxes. Each of data cluters is 
on a window time. The paper is organized as 
follows. In Section 2 the details of the stochastical 
real time LPC algorithm will be pointed out. For 
every data cluster this algorithm updates the 
parameters of an LPC filter (Gaussian model) 
according to an optimality criterion that maximises 
the likelihood function and using an appraiser called 
“finite state machine”. In Section 3 an application to 
two joints and two degree of freedom planar 
manipulator will be presented. The inputs of the 
appraiser are input-output data cluters of an 
experimental PD MIMO control system of the 
manipulator. The outputs are varying-time 
parameters of bidimensional LPC filter and the 
steady-state outputs are parameters of a diagonal 
matrix (2x2) of transfer functions in ‘z’ domain. This 
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matrix is the estimated closed loop model of system 
control PD of the planar manipulator. Trajectories 
for testing real time LPC algorithm have been 
implemented in C language using software, hardware 
and graphic interface of an industrial manipulator. 
Efficiency of this algorithm is validated by 
numerical simulation tests using Matlab 6.5. In 
steady state  the real time LPC of this paper is 
compared with off-line version [10] by use of 
Integral Absolute Error (IAE) performance index. 
  
 
2 SISO and MIMO model estimation 
using real time LPC algorithm 
This section presents the real time LPC algorithm 
and shows how a new real time version of this 
algorithm can be applied for estimating varying time 
SISO and MIMO models. 

The dynamical linear-in-the-parameters-model of 
a LPC digital filter is:  
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where Yn is the vector of nominal output values,  
is the output noise vector, Unε n is the vector of  

nominal input values, ξ  is input noise vector and n 
is the discrete time. The r(n) term is a random noise.  
It will be assumed that r(n) is a random variable with 
independent values and with gaussian distribution as 
follows: 
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The r(n) gaussian distribution function is defined 

as [10]:  
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where zn components are the measured values. These 
values can be written as a sum of the input output 
nominal values and of the noise, that is: 
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The probability function is defined as: 
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The logarithmic Likelihood function is given by: 
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where: 
[ ]balT    =  

An efficient technique for parametric estimate is 
the estimation in Maximum Likelihood sense. As is 
well known the maximum of (7) is equivalent to 
[10]: 
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The λ term is Lagrange multiplier. Differentiating 
the performance index (8) by calculus of and 

, yields:   
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All the eigenvalues of A matrix are the principal 
components. The solution of optimization problem 
(8) is the minimum eigenvalue (last principal 
components) of A matrix (cf. eqs. 10-11) [10]. From 
the eigenvector which corresponds to last principal 
components,  a and b parameters of the model (1) 
are evaluated. Therefore the steps of off-line LPC 
algorithm for SISO model estimation are as follows: 

1) define the the input output data matrix of  
SISO black box: 
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2) compute mean value of the single lines of the 

matrix and define Z vector (cf eq. 11); nz
3) subtract the elements of Z  from lines of 

matrix for obtaining nz nz matrix (cf eq. 10); 
4) compute     T

NN zz=A ;                          
5) calculate the eigenvalues and the eigenvectors 

of A matrix and evaluate the minimum 
eigenvalue. 

The LPC algorithm is also applied for MIMO 
models estimation. Consider a system with q 
measured input values and q )...1  )(( qjnmj =U



measured output values . Note 
that there are q equations systems here:  
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Each system (cf. eqs. 5) is of r equations and N 
unknown quantities , where N is the order 
of the estimated model. LPC algorithm is as follows: 

(r ≤

1) define the input output data matrices of  
MIMO black box:  

qj
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2) compute mean values of the single lines of 

the znj matrices and define: nj
1
z   

3) calculate the following matrices: 
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4) calculate the minimum eigenvalues of Aj 
matrices (j=1…q). 

From the eigenvectors the following parameters 
are achieved (cf. eqs 13): 
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But in many systems the parameters can change 

time after time because the model is non stationary.  
Therefore an appraiser wich must estimate aj and bj 
(j=1…q) parameters in every time is developed. This 
appraiser is called “finite state machine”. A finite 
state machine is a system of discrete inputs-outputs. 
This system can have a possible configuration called 
“state”. As is well known the concept of state in 
control theory means capturing information about 
operation of the system in a set of variable. The state 
provides the task with information indicating what 
action is required at each scan. The parameters of the 
finite state machine of this work are as follows: 

1) parameters_sizes: they are the sizes of 
(j=1…q) vectors (cf. eq. 15); jj ba ,

2) window_size: it is the amplitude of the 
window-time for executing the LPC 
algorithm; 

3) data_ cluster_ dimension:  it is the updating 
interval of   (j=1…q) values;  jj ba ,

4) sample_time: it is the desired sample time. 

The state components of the finite state machine 
are: 

1) last window_sizes of input-output data for 
model estimating; 

2) counter; 
3) last updating of aj and bj parameters. 
In every time  depending on choice of sample time 

the finite state machine performs the following tasks: 
1) buffering of a new state vector from the 

previous state and from new input; 
2) output calculus only from new state vector. 
Step by step the appraiser updates the state. The 

window of input-output samples is translated and 
there is an increment of the value of a counter. If this 
value is maximum (data_cluster_dimension),  

 are updated using LPC which maximises the 
likelihood function (cf eqs. 7-8). In other words the 
real time algorithm is designed to be operated trough 
repeated execution of LPC algorithm depending on 
data clusters dimension.  

jj ba ,

 
 
3 Real Time LPC algorithm for planar 
manipulator control system model 
estimation: simulation results 
This section shows how the new real time version of 
LPC algorithm can be applied for estimating the 
varying time model of the PD control system of a 
planar industrial manipulator with two link and non 
flexible joints. Let us define the following notation: 

,θ ,θ andθ  are reference and actual angular  
position of joint 1 and joint 2 respectively while the 
work-space coordinates are (x,y) [9], [12]. 

r1θ a1 r2 a2

 
Fig. 1. Planar Manipulator. 

Based on this notation and according to LPC 
algorithm for MIMO systems, the following matrices 
and vectors can be written (cf eqs 13-15) : 
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and also is: 
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where L1=0.359m and L2=0.241m  are the lenghts of 
the links. The experimental control system of 
manipulator is an PD control [9], [12] and it is 
implemented in C language.  Figure 2 shows the 
referred trajectories in work space and the actual 
trajectories in joint space from PD control system. 
The initial conditions in work-space are (x(0)=0.6m 
y(0)=0m), that is the homing position [9]. For 
obtaining data set for the appraiser, the maximum 
velocity of each joint is equal to 2 rad/s. 
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Note that there are two equations systems here, 
one for the joint 1 and one for the joint 2 (cf.fig.1):  
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The parameters of the manipulator can change 

time after time because the manipulator model is non 
stationary. Therefore the appraiser must estimate the 
following parameters in every time: 
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In this case the parameters sizes of the finite state 
machine are the sizes of parameters (25) and the data 
cluster dimension is the updating interval of   
parameters values (25). Step by step the appraiser 
updates the state. The data a  are 
updated using  LPC algorithm for MIMO systems 
depending on data cluster dimension. In this case 
LPC algorithm for MIMO systems is applied for 
j=1,2 (q=2) (cf. eqs. 13-15). The steady-state 
solutions of  are constant values and 
therefore the estimated model of the control system 
of the manipulator can be expressed in the form as: 
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As regards the numerical simulation tests, after an 
opportune planning proceeding an input reference 
trajectory has been introduced in the work space. 
Subsequently the inverse kinematics [9],[12] 
converts each cartesian workspace point (x,y) along a 
straight line path into joint angles ( (see fig. 
1) as follows:  
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Fig. 2. Input-output trajectories – test data set 

x[m], y[m], θ1a[rad], θ2a[rad]. 
For each of data clusters the referred and actual 

trajectories in joint space are input and output test 
data set of the finite state machine LPC which is 
suitably simulated in Matlab 6.5 envinroment. The N 
order of estimated model is equal to 2. Table 1 
resumes the parameter values of  real time LPC. 

Sample Time 10 ms 
Parameter size 3 
Window-size 572 samples 
Window-time 5.72s 
Data-cluster 16 samples 

Table 1. Parameters of  real time LPC. 



It is obvius that the window time of each of data 
clusters is equal to 0.016s. Figures 3-6 show the 
varying time parameters of  bidimensional LPC filter 
(cf. eqs. 24-25).  

 
Fig. 3. Estimation of varying-time a21, a11, a01, b21. 

 
Fig. 4. Estimation of varying-time b11 and b01. 

 
Fig. 5. Estimation of varying-time a22, a12, a02, b22 . 

 
Fig. 6. Estimation of varying-time b12 and b02. 

Note that the steady state solutions of parametric 
estimation are quasi-constant values. Therefore 
Tables 2 and 3 resume the steady-state mean values 
solutions of the components of  a1, b1 and a2, b2 
vectors respectively (cf. eq. 27).  

 a21 a11 a01 b21 b11 b01 

a1 -0.43 0.79 -0.41 - - - 
b1 - - - 0.0118 -0.0259 -0.0155

Table 2. a1 and b1 steady-state values. 
 a22 a12 a02 b22 b12 b02 

a2 -0.41 0.81 -0.39 - - - 
b2 - - - -0.0058 0.025 -0.022 

Table 3. a2 and b2 steady-state values. 
The results of estimation process using the 

parameters of tables 2-3 are shown in Figures 7-10. 
Real time LPC of this work is also compared with 
off line algorithm [10] by use of Integral Absolute 
Error (IAE) perfomance index: 

∫=
t

dtEAI
0

... e ,                                                  (30) 

where  and e[ 21 ,eeT =e ] j is the difference between 
the actual position of j-th joint using PD control and 
the estimated actual position of j-th joint using LPC 
algorithm, that is the estimation error of j-th joint 
position( j=1,2). 

 
Fig.7. Actual joint 1 position by PD[rad](-); 
estimated joint 1 position by real time LPC[rad](--). 

 
Fig.8. e1 using real time and off line LPC[rad]. 

 
Fig.9. Actual joint 2 position by PD[rad](-); 
estimated joint 2 position by real time LPC [rad](--). 



 
Fig.10. e2 using real time and off-line LPC[rad]. 
 
Table 4 resumes the IAE values.  

IAE Off-line Real-Time 
Joint 1 0.01 0.007652 
Joint 2 0.028 0.032 

Table 4. IAE Performance Index. 
 
By examining the simulation Figures 7-10 and 

Table 4 the following remarks can be made. The 
model estimation errors are much smaller than the 
effectively angular displacements of the joints. The 
estimation errors achieved from real time LPC are 
less rapidly varying time than those achieved from  
off-line LPC. Also IAE performance index of real 
time algorithm for joint 1 position estimation error is 
lower than off line version. Therefore when 
implemented with finite state machine, it turns out 
that LPC algorithm has a better performance. 

 
 
4   Conclusion 
This paper has introduced a new real-time 
stochastical LPC to estimate SISO and MIMO 
varying time models from input output data clusters 
of black boxes. An application to estimate the PD 
MIMO control system model of a two links planar 
manipulator is developed. The approach is based on 
LPC using a finite state machine. LPC is formulated 
within a maximum likelihood framework using a 
Gaussian varying time model. In comparison with 
off-line version there are many advantages. In fact 
the test data set in all the instants can be unknown, 
because the data processing depends on data cluster 
dimension in a time window. Furthemore this 
algorithm can be utilized when the plant parameters 
change and a manipulator is a non-stationary system. 
Numerical simulations show acceptable values of the 
model estimation errors in steady state.  
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