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Abstract: - Input shaping for circular trajectory following through a second-order system usually results in a 
smaller than desired radius. The reasons of this smaller radius by using input shaping are investigated in this paper. 
A coefficient with two parts is found to correct this effect. Using this coefficient to modify the input shaper, better 
performance of applying input shaping to circular trajectory following is achieved. Simulation is made to show the 
effect of input shaping and the use of the developed coefficient. 
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1. INTRODUCTION 
Vibration is a serious problem in mechanical system 
especially for those requiring both precise motion 
and structural flexibility. Mostly used examples of 
such systems are the positioning of a disk driver’s 
head, container cranes, large space structures, and 
coordinate measuring machines. There is active 
research interest in finding methods that will 
eliminate vibration for a variety of mechanical and 
structural systems. Making the system stiffer or 
making the load lighter are the most obvious 
suggestions. But it is usually difficult to substantially 
increase the stiffness or decrease the weight due to 
cost or physical limitations. Lowering the 
acceleration or using jerk-limited curve can help to 
reduce the vibration. But in the final analysis, they 
only lower the system’s performance. Using a close 
loop control is traditional method, but the result is 
rarely time optimal.  

Input shaping was first introduced to control 
residual vibration by Singer and Seering in 1989[2]. 
It origins from ‘posicast’ method that was developed 
by Smith in 1957[1]. After Singer and Seeing, a lot 
of papers appear to address the different aspects of 
this technology, such as sensitivity, 
robustness[3][4][5], frequency domain designing 
[13][6][7][8], trajectory following[9][10][11], and so 
on. All those work of using input shaping to suppress 
residual vibrations are well done and demonstrated 
for point to point motions. Singhose[9][10][11] then 

showed us that input shaping can also be applied to 
spatial trajectories for trajectory following where 
only the shape of the movement is important. But, 
there is a ‘smaller-than-desired radius around most of 
the circle’ problem for the circular trajectories as 
stated in [11]. A solution was also given as by ‘using 
an unshaped circle command that has a radius larger 
than desired’. But the reason of this ‘smaller-than-
desired-radius’ by input shaping is not analysed or 
given, what’s more, no feasible solution to determine 
the ‘unshaped circle command that has a radius 
larger than desired’ is given. 

This paper will first analyse the reasons that cause 
the smaller radius of circular trajectory by input 
shaping in section 2. Then based on this, a 
coefficient expression to correct this effect is 
deduced. Either the parameter of the input shaper or 
the unshaped circle command can then be changed 
according to this coefficient expression to get a more 
precise trajectory following for circular trajectory.  
Simulations is then made to show the effect of this 
modified input shaping in section 3.  Conclusions are 
made in section 4.  

 
 

2. REASONING 
A circular trajectory is produced by two orthogonal 
sine curve. The radius of the circle reflected on the 
sine curve is the amplitude of the sine curve. So the 
smaller than desired circular radius effect that is 
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found through using input shaper could be analysed 
with the amplitude of a sine curve. Without 
exception, the plant is modelled as a second-order 
system(mass-spring-mass). 

There are two factors that influence the amplitude 
of a sine curve through a second-order system with 
input shaper. The first factor is due to the addition of 
two sine curve with a phase difference which is 
produced by the input shaper. This factor makes the 
radius smaller then designed; The second factor is 
due to the response of a second order system to a 
sine curve. Normally, this factor makes the radius 
bigger than designed. To some extent, the second 
factor can compensate the smaller radius effect that 
is caused by the first factor.  
 
 

2.1 Introduction of input shaping 
Input shaping is a feedforward control technique for 
reducing residual vibrations in flexible systems. It 
convolves the ordinary input signal with a sequence 
of impulses that is deduced from the system 
parameters to result in a shaped input. The energy, 
that is near the system’s natural frequency, is 
removed by the impulses, thus residual vibration is 
greatly eliminated. 

The input shaping method used by [11] is designed 
for step changed velocity input. Zero Vibration(ZV) 
input shaping produces two impulses to convolve 
with system’s input signal. The amplitude and time 
location of the two impulses in ZV are: 
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dT : damped period of vibration;  

ω  : the system’s natural frequency;  
21 ξωω −=d

: the damped frequency;  

ξ : the system’s damping ratio.     

From eq.1, it is clear that the parameters of the 
input shaping are dependent on the system’s 
parameters ξ  and ω . The change of the system’s 
parameters will cause the ZV input shaping 
ineffective. Therefore, other input shapings that are 
more robust to the change of system’s parameters 
were developed. Among them are Zero Vibration 
Derivative(ZVD) input shaping. The ZVD produces 
three impulses to convolve with the input signal of 
the system. The amplitude and time location of the 
three impulses are: 
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The amplitudes of the impulses in both ZV and 

ZVD should be designed to have no influence on the 
amplitude of the input signal after the overall delayed 
time, that is the amplitude of the impulses should be: 

∑ =
i

iA 1
 for step input signal. This is because the result 

signal is simply the summation of  step signals with 
the amplitudes that are scaled by those amplitude of 
impulses. But if an input signal has other form, for 
example, a sine curve, the amplitude of result signal 
is not any more a simple summation of amplitude of 
individual sine curves, as those sine curves have a 
time difference as 2/dT . 

 
 

2.2 Addition of two sine curve with phase 
difference 
Generally, we assume that a sine signal has the form  

tB Ωsin  ,                          (3) 
and the system parameters 

nωξ ,  are known. 

Applying the ZV method of input shaping, we could 
express the shaped input in this way:  
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21 , AA : the amplitudes of the two impulses of ZV,  
Ω : the frequency of the sine signal. 

Obviously, the shaped amplitude B1 is smaller than 
the original amplitude B. For a circular trajectory, 
when velocity amplitudes of the two orthogonal axis 
are smaller than desired, then smaller radius circle 
will appear. 

Fig. 1 shows an example of a shaped sine curve. 
The dotted sine curve in the figure is the original 
curve with unit amplitude. The solid curve is the 
shaped sine curve. As can be seen from the figure, 
the shaped curve has a smaller amplitude than the 
original curve.   
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Fig. 1.  Addition of sine curves with phase difference 

 
In order to make the shaped sine curve to have the 

same amplitude as the unshaped sine curve, a 
coefficient can be used to modify the amplitude of 
the impulses of the input shaper. The ratio between 
unshaped amplitude and shaped amplitude of the sine 
curve is the coefficient. Thus the coefficient is 
according to (5):  
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Using this ratio, we can modify the amplitude of 
impulses in ZV method, so that the shaped sine curve 
has no change in amplitude compared with unshaped 
input signal. The amplitude of the two impulse in the 
ZV method is then: 

10_0 coefAA new ×= ; 11_1 coefAA new ×=   (7) 

according to (1) and (6). 
Through this coef1 we can easily remove the effect 

that is caused by the addition of two sine curves with 
phase difference.  

 
 

2.3 Response to a sine curve 
The transfer function of a second order system can 
be expressed by :  
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The response of such a second order system to a 

sine curve tB Ωsin  is: 
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The factor 222 )2()1( uξµ +−  will then change 

amplitude of the sine signal after going through the 
second order system. In order to get the same 
amplitude of the responded signal as the initial input 
signal, we can use another coefficient to modify the 
amplitude of the impulses of the input shaping: 

222 )2()1(2 ucoef ξµ +−=           (10) 

So, the amplitude of the impulse should be : 
;20_0 coefAA new ×=  21_1 coefAA new ×=   (11) 

by combining (1) and (10). 
 
 

2.4 Combination 
Of the two coefficients that are developed above, one 
is aimed to modify the smaller amplitude that is 
caused by the two sine curve addition; the other is 
aimed to modify the bigger amplitude that is caused 
by the response of a second order system. In order to 
get the same amplitude of the responded sine curve 
as the input sine curve, the two coefficients could be 
combined. According to (6) and (10), the combined 
coefficient to modify the amplitude of the impulses 
of ZV input shaper can be expressed by:  
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and now the amplitude of the impulses should be: 
;0_0 coefAA new ×=  coefAA new ×= 1_1       (13) 
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Fig.2. gives out a simulation result of the effect of 
this modified input shaper. Input signal is a sine 
curve with unit amplitude. The solid curve in Fig.2 is 
the response signal to the input sine curve through a 
second order system without any controller or input 
shaper. The dotted curve is the response to the same 
input through the same system but with the modified 
input shaping. It is clear from the figure that the 
dotted curve reserves the amplitude and shape of the 
input sine curve by using the modified input shaping.    
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Fig. 2. Response of a second-order system to sine 

input 
 

As ZV method is sensitive to the modelling error 
of the system parameter ω , the more robust method, 
ZVD, is mostly used. For the two parts of the 
coefficient, the second part(coef2) remains the same 
for those two methods, but the first parts(coef1) are 
different. The difference is caused by the different 
number of impulses in ZV, ZVD. In ZVD, three sine 
curves with another phase delay should be added 
together to form a shaped sine curve, which has a 
even smaller amplitude. 

 
 

3 SIMULATION RESULT 
In this section, simulation results are presented to 
show the effect of the coefficients developed above 
for the circular trajectory. The system model is 
described by two mass-spring-mass system which 
represent a two-orthogonal-mode model as shown in 
Fig. 3. 

We assume the same frequency and same damping 
ratio for both vibration modes 

( 01.0,1 ==== yxyx Hzff ξξ ). The inputs to the 
system are the planned x and y direction velocity of 
the load. The position outputs of the load from both 
direction form the trajectory. The radius of the 
circular is 0.5, and the velocity input command has a 
frequency of 0.15Hz. The circle is initiated to the +y 
direction at position (0,0).. 
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Fig. 3.[11]: Two-mode system model 

 
The following Fig.4, Fig.5 and Fig.6 are the 

simulation results. Fig.4 shows the expected circle 
and the responded circle from the system mentioned 
above without any controller. Fig.5 gives out the 
responded circle from the same system with ZVD 
input shaping. Fig.6 demonstrates the effect of the 
modified input shaping.  

The dotted circle in Fig.4 is the desired circle of 
the load. The solid curve is the simulated load 
response without any input shaping. Obviously, the 
responded circle has unexpected vibrations along the 
circular trajectory.  
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Fig. 4.  Reference circle and unshaped response 

 
The solid curve in the Fig.5 is the responded 

trajectory after ZVD input shaper is used. There is no 
obvious vibrations around the responded trajectory.  
Comparing the solid curve in Fig.4 and Fig.5, it is 
clear that the input shaper provides a better shape of 
trajectory following. But the radius of the responded 



 5

circle in Fig.5 is smaller than desired. This smaller 
radius effect is caused by the addition of three(for 
ZVD method) sine curves with a phase difference 
which are produced by the input shaper, 
compensated a little by the response of a second 
order system to a sine curve input as analysed in 
section 2. 

 

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

-0.5

0

0.5

x axis

y 
ax
is

circular trajectory following

reference contour 
simulated ZVD contour

 
Fig. 5.  Reference circle and ZVD-Shaped response 

 
Now, the coefficient to modify the input shaper is 

applied to the ZVD input shaper. The simulated 
result is shown in Fig. 6. The dotted circle is again 
the designed load trajectory, the solid circle is the 
simulated load response. We could see that in most 
trajectory area, the solid curve and the dotted curve 
overlap. Thus, the performance of mean value, that is 
mentioned in [11],  is greatly improved. 
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Fig. 6: Reference circle and modified ZVD-Shaped 

response 
 
 

4 CONCLUSION 
Input shaping helps to eliminate the residual 
vibration of a flexible system. But for a circular 

trajectory, using input shaping usually results in a 
smaller radius circle. This fact is caused by the 
addition of sine curves with phase difference that are 
caused by the input shaper. In a second order system, 
this smaller than desired radius effect can be partly 
compensated by the response of the system to a sine 
curve. Nevertheless, this effect cannot totally be  
compensated. A coefficient is than found to modify 
the amplitude of the impulses of the input shaper, so 
that the response of the load could have the same 
radius as designed. Simulations show that the 
modified input shaper gives better load response than 
ordinary input shaper.  

But for an arbitrary trajectory, this coefficient is 
impractical to be applied.  

As input shaping is a feedforward method, it has 
no resistance to disturbance. But it could be 
combined with the industrial cascaded control loop. 
Thus the input shaper deals with the residual 
vibration of the flexible system, and leaves the 
control loop the task of getting rid of the disturbance. 
For very flexible system, which cannot be stabilized 
by the cascaded control loop alone, the use of input 
shaper is every effective.       
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