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Abstract: In this paper an improved algorithm  
for real µ  synthesis is presented. We propose a 
new BMI formulation which allows one to perform 
joint search for the controllers and the multipliers.  
This is of great difference from the conventional 
(D,G)-K iteration and its variations. The results can 
be extended to the other cases with different 
uncertainty descriptions. 
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I.  INTRODUCTION 
 

In the last two decades, µ  analysis and 
synthesis have emerged to be a powerful tool for 
analyzing and designing robust controllers for 
systems subject to multiple sources of uncertainties. 
In the complex µ  case, it is well known that µ  
controllers can be obtained by minimizing the ∞H  
norm of an appropriately scaled transfer matrix 
with respect to the multiplier and the controller 
[1-5] (a rigorous proof of certain important 
identities used in µ  synthesis can be found in 
[6,7] ). Unfortunately, the synthesis problem is not 
jointly convex in the multiplier (or scaling) and the 
controller, though separately convex in each of 
these variables. Thus the currently existing 
synthesis is essentially based on iterating between 
the phase of computing the µ  upper bound with 
the controller fixed, and the phase of ∞H  
optimization with the multiplier fixed.  

 
In particular, in the phase of computing optimal 

multipliers, the scalings are available via solving a 
set of linear matrix inequalities at several grid 
frequencies, and curve fitting is performed to 

obtain a finite dimensional transfer function 
representation of them. In many cases, 
improvement of robustness during the µ  
synthesis iteration strongly depends on the quality 
of the curve fits for the scalings and this step has 
been seriously criticized as the weak link in µ  
synthesis. To alleviate this difficulty, Safonov and 
coworkers [4,8] proposed a multiplier approach 
(Km-synthesis or called M-K iteration) to compute 
suitable scalings. In their approach, the scaled ∞H  
norm minimization problem is transformed into an 
equivalent generalized positive real problem, in 
which the scalings are replaced with a linear 
parameterization of some fixed-order transfer 
functions satisfying certain properties. Thus no 
curve fitting of the scalings is required. A similar 
method employing rational functions as a basis was 
proposed in [9] at about the same time. These two 
methods fall into the category of the so called basis 
function method. 

 
In the subsequent development for µ  synthesis, 

Goh et al presented a bilinear matrix inequality 
(BMI) formulation for (mixed) µ  synthesis [10]. 
This formulation allows the finite dimensional joint 
local and global optimization over an arbitrarily 
linear combination of a prescribed set of basis 
multipliers and the controller space. This result by 
this approach always improves on the conventional 
(D,G)-K iteration and M-K iteration. However, the 
iterative scheme for solving the generalized 
multiplier in one phase and the controller in 
another phase is retained. This motivates the 
present research of developing new computational 
algorithms for real µ  synthesis on the basis of a 
new BMI formulation, which allows joint search of 
the generalized multiplier and the controller in a 
single phase. 

 
The paper is organized as follows. Section II 



gives the problem statement and some 
preliminaries for future developments. Section III 
presents the main results. A new BMI formulation 
and the induced algorithm are given. Section IV 
illustrates this approach by a numerical example. 
Section V is the conclusions. 
 

II. PROBLEM FORMULATION AND 
PRELIMINARIES 

 
A. NOTATION 
RF := the set of real-rational, proper transfer 

functions. 

∞RH := the set of transfer matrices whose entries are 
proper, real-rational functions with no poles 
on the closed right half complex plane.  

Let RFD∈ , then )()(~ sDsD T −= . 
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Fig. 1 KP −−∆  framework 

 

B. Problem formulation 
 
Consider the robust controller synthesis framework 
in Fig. 1, where P  denotes the generalized plant 
described by 
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where nRx∈  is the state vector, rnRw∈  denotes 
the exogenous signal, pRu ∈  is the control signal, 

rnRz ∈  is the signal connected to the uncertainty, 
and pRy∈  is the measurement output. r∆∈∆  
represents the structured parametric uncertainties 
of the control system, and K  is the dynamic 
output feedback controller of the following form to 
be designed.  
 

⎩
⎨
⎧

+=
+=

y D xCu
yBxA

KKK

KKKKx
K

&
 

 
The purpose of this paper is to find a dynamic 
output feedback controller such that the 
closed-loop system is uniformly robustly stable 
against as large parametric uncertainty r∆∈∆  as 
possible. This is the general real µ  controller 
synthesis problem. A number of sufficient 
conditions for the problem have appeared in the 
literature, notably [1,4,5,10], which were shown to 
be equivalent [6]. For the latter development of our 
results, the frequency domain condition presented 
in [10] is restated in the next theorem. 
 
Theorem 1 [10]: The nominal system ),( KPFl  in 
Fig. 1 is uniformly robustly stable against the set of 
real parametric uncertainties ∈∆ r∆  with sizes no 
greater than γ  if there exist a controller K  and 
generalized multiplier W  in )(RFSr  satisfying 
(i) ∞∈ RHKPFl ),~( γ ; 
(ii) Herm [ ] 0)( >ωjW  ∞∪∈∀ Rω ; 

(iii) Herm [ ] 0)(),~( >ωγ jWKPFl  ∞∪∈∀ Rω . 

 
It is interesting to note that the transfer function 

WKPFl ),~( γ  of condition (iii) in Theorem 1 can be 
interpreted as the map from w  to z  as shown 
below. 

P 

K 

l∆

∆
O

1

 

z 

y 

w 

u 



2221

1211

rr

rr

PP
PP
~~
~~

K

W
w0wz

e 1u

rP~

 
Fig. 2 

 

With the linear fractional transformation 
technique, we can redraw Fig. 2 as Fig. 3. The  
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              Fig. 3 

equivalence is formally established in the 
following lemma, which is of paramount 
importance to our results in that it will induce a 
brand-new development for the general real µ  
controller synthesis problem. 
 
Lemma 1: )),(,(),~( KWdiagGFWKPF ll =γ , where  
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Furthermore, if 1
1 K

as
K

+
=  for some Ra∈ , then  

)),(,(),~( 11 KWdiagGFWKPF ll =γ , where 

G
as

IIdiagG )1,,(1 +
= .                      (1) 

Proof: Draw the flow chart for the transfer function 
WKPFl ),~( γ  and pull out W  and K . 

 
 

III. MAIN RESULTS 
 

In this section, we will reinterpret the robust 
stability condition of Theorem 1 by the result of 
Lemma 1. The impact of the new formulation lies 
on that it allows one to simultaneously compute the 
controller and the generalized multiplier in a single 
phase. This features a quite different synthesis 
framework from the conventional D-K (or (D,G)-K) 
iteration and its variations, which usually involves 

two phases between alternatively computing ∞H  
optimal controller and computing µ  upper bound. 
 
A. Robust Stability Condition in New BMI 

Formulation 
 
  The robust stability condition of Theorem 1 is 
reinterpreted in new formulation as follows. 
 
Theorem 2: The nominal system ),( KPFl in Fig. 1  
is uniformly robustly stable against the set of real 
parametric uncertainties ∈∆ r∆  with sizes no 
greater than γ  if there exist a transfer function 

1K  and transfer matrix W  in )(RFSr  such that  
(i) ∞∈ RHKPFl ),ˆ( 1γ ; 
(ii) Herm [ ] 0)( >ωjW  ∞∪∈∀ Rω ; 

(iii) Herm [ ] 0)))(,(,( 11 >ωjKWdiagGFl  ∞∪∈∀ Rω . 

where γγ P
as

IdiagP ~)1,(ˆ
+

= , and 1G  is described in 

(1). 
Proof: By Theorem 1 and Lemma 1. 
 

Next, we make use of the following generalized  
positive real lemma to yield BMI representation for 
the frequency domain condition of Theorem 2. 
 
B. Bilinear Matrix Inequality Representation 

for the Frequency Domain Condition  
 
Lemma 2 [11]: Consider a plant DBAsICsX +−= −1)()( , 
with none of the eigenvalue of A  lies on  
the imaginary axis of the complex plane. There  
exists 0>ε , 0>κ  such that       

{ } IjXHermI εωκ ≥≥ )(  ∞∪∈∀ Rω ,  
if there exist TPP =  such that  
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Define the following notation: 
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These lead to the following BMI formulation 
(different from [10]) for the general real µ  
controller synthesis problem. 
 
Problem: Given generalized plant P . Maximize 
the value γ  subject to the following BMIs (1)-(4), 
i.e., maximize γ  subject to the existence of the 
matrix variables T

MM PP = , T
WW PP = ,  TPP = , 

(
1KA , 

1KB , 
1KC , 

1KD ), (
iWA , 

iWB , 
iWC , 

iWD ), 
li ,...,1= , and a scalar a  satisfying the following 

BMIs 
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1kq is the order of the controller 1K . 
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where q = 
1kq  plus the order of the generalized 

multiplier W . 
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C. New Real Mu Synthesis Algorithm 
 
Step 1. Compute the generalized plant )(sP . 
 
Step 2. Get a multiplier D  and a controller dkitK   

from the i-th D-K iteration by the “dkit”  
command of µ -Analysis and Synthesis  
Toolbox [2].  
 

Step 3. Compute
∞

−= 1/1 DMDγ  and set the initial 

generalized multiplier ~DDWdkit = . 

      Assume 1
1 K

as
KK dkit +

==  for some Ra∈  

(If this is not the case, we could modify the 
algorithm by inserting a strictly proper 
internal model into the closed loop before 
forming the KP −−∆  framework in order 
to fulfill the requirement here). 

 
Step 4. Fix the controller 1K  and the generalized 

multiplier dkitWW = , solve LMI (1)-(4) for 
the auxiliary variables ),,( PPP WM :  
Step 4.1. Increase γ . Compute rP~ , AR , 

AU , AV , TR , TU , TV , 
1KQ , 

WQ , and TQ . 
Step 4.2. Solve the LMIs (1)-(4) for the 

auxiliary variables ),,( PPP WM . 
Step 4.3. Repeat Step 4.1 and Step 4.2 till 

the LMIs are near infeasible.  
 

Step 5. Fix the auxiliary variables ),,( PPP WM , 
solve LMIs (2)-(4) for new controller and 
generalized multiplier, i.e., (

1KA , 
1KB , 

1KC ,
1KD ), (

iWA , 
iWB , 

iWC , 
iWD ), li ,...,1= : 



Step 5.1. Increase γ . Compute rP~ , AR , 
AU , AV , TR , TU , and TV . 

Step 5.2. Solve (2)-(4) for new controller  
and generalized multiplier, i.e., 
(

1KA , 
1KB , 

1KC , 
1KD ), and (

iWA , 

iWB , 
iWC , 

iWD ), li ,...,1= . 
Step 5.3. Repeat Step 5.1 and Step 5.2 till 

the LMIs are near infeasible. 
 

Step 6. Iteratively perform Step 4 and Step 5 till 
there is no significant increase in γ . 

 
Step 7. The resulting controller is given by 

1
1 K

as
K

+
= . 

 
 

IV. NUMERICAL EXAMPLE 
 

Example: Consider the generalized plant  
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subject to parametric uncertainty ),,,( 4321 δδδδdiag=∆ . 
 
Three robust controller design methods are carried 
out to yield the following results: 
 
A. Matlab command “hinflmi” 

215970
63024
1 .

.inf ==γ  

85923
363990362

.
..

inf +
+

=
s

sK   

 
B. D-K iteration (“dkit” command of [2]) 
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C. Our approach 
 

By our method, we obtain that  
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Notice that the stability margin guaranteed by our 
method is better than that by ∞H  control and that 
by D-K iteration using currently available software 
[2]. 
 
 

V. CONCLUSIONS 
 

We have presented a new real µ  synthesis 
method which can be viewed as an 
alternative/supplement to the conventional D-K (or 
(D,G)-K) iteration or the other µ  synthesis 
methods. The advantages of this new algorithm are 
as follows: (1) performs simultaneous search for 
the controllers and multipliers. Particularly, the 
search for the poles and the zeros of the multipliers 
can be conducted simultaneously (different from 
the existing approaches, e.g., [8,9,10], where the 
poles were fixed); (2) no need of curve fitting; (3) 
no need of spectral factorization; (4) the orders of 
the controllers and multipliers are fixed during the 
design. Moreover, it always improves on the results 
obtained by the other µ  synthesis schemes. 
Finally, the approach can easily be extended to the 
other cases with different uncertainty descriptions, 
which will appear in the coming papers. 
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