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Abstract: - Designing a microprocessor involves determining the optimal microarchitecture for a given objective
function and a given set of constraints. This paper studies the shape of the design space of superscalar out-of-order
processors under different objective functions and constraints. We show that local optima exist whose objective
function values are significantly worse than for the global optimum, in several cases more than 20% off. We
subsequently consider the implications of this observation for early design stage exploration studies. Four design
space search algorithms (random descent, steepest descent, one-parameter-at-a-time and simulated annealing) are
evaluated according to their ability to avoid local optima and their overall simulation time. We conclude that
one-parameter-at-a-time achieves a good balance between both criteria. In addition, we study the usefulness of
fast simulation techniques for early design stage exploration. A case study with statistical simulation shows that
significant simulation speedups are achieved while incurring little inaccuracy (a few percent) on the optimal design
point.
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1 Introduction
Designing a new microprocessor is a complex pro-

cess as the processor design space is huge and the var-
ious design parameters and constraints interact with
each other. These design issues typically concern per-
formance, cycle time, power consumption, chip area,
reliability, security, verifiability, etc. The task for a de-
signer is to optimize the microarchitecture such that a
given objective function is optimized. The objective
function can take many forms depending on the target
domain of the microprocessor under design. For ex-
ample, when designing a server microprocessor, per-
formance typically needs to be optimized while keep-
ing the power consumption within a given power bud-
get. For an embedded microprocessor on the other
hand, the objective criterion typically involves energy-
and/or cost-efficiency, or minimal energy/cost/area for
a given performance target.

Obviously, the time-to-market for a newly designed
processor should be kept as short as possible. Indeed,
a computer company wants its microprocessor to out-
perform competitors at the time the new microproces-
sor gets introduced to the market. Although a short
time-to-market is important for general-purpose mi-

croprocessors, it is even more important, not to say of
vital importance, for embedded microprocessors. For
example, designing a customized application-specific
embedded microprocessor should be done as fast as
possible to shorten the time-to-market in the rapidly
evolving embedded market. To meet the short time-to-
market both in the general-purpose and the application-
specific domain, researchers have proposed various (se-
mi-)automated design space exploration techniques, see
for example [1, 4, 6, 8, 9, 11, 15, 16, 19].

In this paper, we study the shape of the design space
of superscalar out-of-order processors and what the
implications are for early design stage exploration tech-
niques. To this end, we first investigate whether local
optima exist in the processor design space and how
this is affected per application and objective function.
We show that local minima exist and that depending
on the objective function the performance in the local
optima can be significantly lower than in the global op-
timum, more than 20% in several cases. To the best of
our knowledge there is no prior work available in the
literature that characterizes the design space in terms
of local and global optima for superscalar out-of-order
microprocessors. We subsequently study the impli-



benchmark input simpoint
bzip2 program 10
crafty ref 1
eon rushmeier 19
gcc 166 100
gzip graphic 4
perlbmk makerand 2
twolf ref 32
vortex lendian2 58

Table 1. The SPEC CINT2000 benchmarks
used in this paper, their inputs and their early
single simulation points.

cations of these observations for early design stage
explorations. We identify two main issues related to
early design stage methods: the search algorithm for
exploring the design space and the fast simulation tech-
niques to drive the search algorithm. Obviously, under
the existence of local optima, there is a potential pitfall
that the search algorithm will yield a local optimum
instead of the global optimum. We evaluate four auto-
mated design space search algorithms and study their
performance in terms of (i) total simulation time, (ii)
ability for avoiding local minima and (iii) inefficiency
of the identified optimum. Next to detailed simulation,
we also consider a case study in which we use a fast
simulation technique, namely statistical simulation, to
drive the design space exploration.

This paper is organized as follows. Section 2 presents
our experimental setup. In section 3 we study the pro-
cessor design space in search of local minima under
different objective functions. Section 4 investigates
the implications for early design stage exploration. Fi-
nally, we conclude in section 5.

2 Experimental setup
We use SimpleScalar/Alpha v3.0 as our simulation

framework [3]. In order to estimate dynamic power
consumption, we use Wattch v1.02 [2] which quan-
tifies on-chip power consumption at the architectural
level. We assumed a 0.18µm-technology and the most
aggressive clock gating mechanism (cc3 ): a unit that
is unused consumes 10% of its max power, and a unit
that is used for a fractionx only consumes a fractionx
of its max power.

The chip area estimates are obtained using a tool
developed by Steinhaus et al. [17].1 This tool takes as
input the SimpleScalar configuration file and computes
an estimate for the chip area of the microarchitecture
in terms ofλ2 with λ being half the minimum feature
size of the chip technology.

The 8 SPECint2000 benchmarks that we use are
given in Table 1 along with their inputs and their sin-

1http://www.informatik.uni-augsburg.de/
lehrstuehle/info3/research/complexity

gle 100M-instruction simulation points as determined
by Early SimPoint [14].2

3 The shape of the processor design space
In this section, we want to verify whether local op-

tima exist in the processor design space, and if they
do, how many local optima exist, how inefficient they
are compared to the global optimum, and how this is
affected by the objective functions and the design con-
straints. Before studying the shape of the processor
design space, we first define a local and global min-
imum. A local minimumis a design point that has a
lower objective function value than all its neighbours
(along all dimensions). Aglobal minimumis the lo-
cal minimum with the lowest objective function value.
Obviously, if the design space only has a global opti-
mum and no local optima, the potential risk from local
optima is nihil making the design process much sim-
pler. If on the other hand, local optima exist, the de-
sign process will need special care to avoid the design
search process from identifying a local optimum as the
optimal design point.

3.1 Optimization criteria
As mentioned earlier, there are a large number of

potential objective functions when designing a micro-
processor with different boundary conditions. Obvi-
ously, the shape of the design space can change wildly
when the objective function is changed. Different ob-
jective functions result in different optima and possibly
also in a different number of local minima. In this pa-
per we consider three example objective criteria with
a varying degree of complexity.

The first objective function isminimal energy-delay
product (EDP), i.e. the purpose is to identify the design
point in a given processor design space with minimal
EDP. EDP is an energy-efficiency metric that is often
used in the context of general-purpose processors. It is
defined as follows:EDP = EPI · CPI = EPC ·
CPI2.

Our second objective function isminimal energy un-
der the constraint of near-optimal performance. The
purpose of this objective function is to identify the de-
sign point with a CPI that is within 2% of the opti-
mal CPI while minimizing the energy consumption.
This objective criterion gives a higher weight to per-
formance than the ‘minimal EDP’ objective function
because it requires near-optimal performance. Mini-
mal EDP on the other hand, is willing to sacrificex%
performance if the energy consumption decreases by
more thanx%.

Our third objective function isminimal energy-delay-
square product ED2P under the constraint of a maxi-

2http://www.cs.ucsd.edu/ ∼calder/simpoint



parameter dependent parameters values
window size RUU size 16 32 48 64

LSQ size 8 16 24 32
processor width issue/decode/reorder width 2 4 6 8

int ALUs 2 4 6 8
int multiplies 1 1 2 2
memory ports 1 2 3 4
fp ALUs 1 1 2 2
fp multiplies 1 1 2 2

branch predictor bimodal predictor 1K 2K 4K 8K
gshare predictor 1K 2K 4K 8K
meta predictor 1K 2K 4K 8K
BTB 64 128 256 512

L1 I-cache size 8KB 16KB 32KB 64KB
associativity 1 1 2 2
latency 1 1 2 2

L1 D-cache size 8KB 16KB 32KB 64KB
associativity 1 1 2 2
latency 1 1 2 2

L2 cache size 256KB 512KB 1MB
associativity 4 4 8
latency 16 18 20

Table 2. Processor design space.

mum chip area. This objective function minimizes the
energy-delay-square product ED2P which is defined as
ED2P = EPI · CPI2 = EPC · CPI3 under the
constraint that the chip area does not exceed a given
threshold. ED2P gives a larger emphasis on perfor-
mance than EDP. ED2P is also voltage-independent
and frequency-independent (to a first degree). In this
paper, we measure chip area in terms ofλ2 with λ be-
ing half the minimum feature size. This metric makes
it easy to compare and project the chip area of designs
in future technologies which makes it particularly use-
ful during early design stage explorations.

3.2 Existence of local optima
In this paper, we consider the design space of a

superscalar out-of-order processor in which we vary
six important microarchitectural parameters: window
size, processor width, branch predictor, L1 I-cache, the
L1 D-cache and unified L2 cache. Table 2 shows how
the various parameters (and several dependent vari-
ables) are varied. The number of design points equals
3,072 in total. All these design points were evaluated
for all benchmarks through detailed processor simula-
tion. These data allow us to identify the global min-
imum, i.e. the processor configuration with the min-
imum objective function value. This is done for the
three objective functions from the previous section, see
Table 3. As expected, we observe that the optimal con-
figuration depends on the objective function as well as
on the benchmark.

Table 3 also shows the number of local minima per
benchmark for all three objective functions along with
their inefficiencies. We define theinefficiency of a lo-
cal optimumas the relative difference of the objective
function’s value in the local and global optimum. For
example, for objective functionF , this is Flocal−Fglobal

Fglobal

with Flocal and Fglobal the objective function in the
local and global minimum, respectively. A first im-
portant observation that we make from Table 3 is that

local minima indeed exist and that the number of lo-
cal minima varies for different objective functions and
different benchmarks. For the ‘minimal EDP’ objec-
tive criterion most benchmarks do not show local min-
ima; only two benchmarks have a single local mini-
mum. The number of local minima generally increases
for more complex objective functions, see for exam-
ple the ‘minimal energy for near-optimal performance’
and the ‘minimal ED2P for a given chip area’ objective
criteria. For the latter objective function, we observe
up to 6 or 7 local minima for particular benchmarks.
We also observe from Table 3 that the inefficiencies
can be significant, in many cases the inefficiencies in
the local minima are more than 20% (up to 230% for
crafty).

4 Design space exploration techniques
We now study how the shape of the processor de-

sign space impacts design space exploration. Auto-
mated design space exploration is particularly useful
when designing customized embedded microproces-
sors. In this section, we consider four processor design
space search algorithms: random descent, steepest de-
scent, one-parameter-at-a-time and simulated anneal-
ing. This choice is motivated by the fact that (i) ran-
dom descent is a very simple approach, (ii) steepest
descent is a well known approach from other research
domains, (iii) one-parameter-at-a-time was previously
used by Fornaciariet al. [6] and (iv) simulated anneal-
ing, used for example by Conteet al. [4], tries to avoid
local optima.

We start by presenting four design space search al-
gorithms. We subsequently evaluate their performance
using detailed processor simulation; this is to study the
intrinsic performance of the search algorithms. Third,
we study design space exploration using fast simula-
tion techniques.

4.1 Design space search algorithms
Random descentis the simplest algorithm. It starts

from a given design point. The idea is then to ran-
domly choose a dimension at each iteration and ran-
domly increment or decrement the microarchitectural
parameter along that dimension. If the objective func-
tion improves, we accept this new design point; oth-
erwise, we reject it. The algorithm finishes when the
objective function can no longer be improved. Obvi-
ously, in order to reduce the number of simulations,
we keep track of the design points that were evaluated
previously so that we do not need to recompute them.

Steepest descentis similar to random descent ex-
cept that in each iteration the dimension is determined
along which the biggest improvement in the objective
function is observed. The algorithm then takes a step



minimal EDP

optimal configuration local minima
benchmark window width bpred L1 I$ L1 D$ L2 $ # inefficiency
bzip2 48 6 2K 8KB 16KB 1MB 0 n/a
crafty 64 8 8K 64KB 64KB 1MB 0 n/a
eon 64 8 8K 64KB 32KB 256KB 0 n/a
gcc 48 8 1K 8KB 32KB 256KB 0 n/a
gzip 48 8 1K 32KB 16KB 256KB 1 20.4%
perlbmk 32 6 1K 32KB 32KB 1MB 1 14.1%
twolf 48 4 4K 32KB 32KB 1MB 0 n/a
vortex 64 8 8K 64KB 32KB 1MB 0 n/a

minimal energy for near-optimal performance

optimal configuration local minima
benchmark window width bpred L1 I$ L1 D$ L2 $ # inefficiency
bzip2 64 8 8K 8KB 32KB 1MB 1 6.4%
crafty 64 8 8K 64KB 64KB 1MB 0 n/a
eon 64 8 8K 64KB 32KB 256KB 0 n/a
gcc 64 8 1K 8KB 32KB 256KB 0 n/a
gzip 64 8 1K 32KB 64KB 256KB 0 n/a
perlbmk 48 6 2K 32KB 32KB 1MB 2 4.9%, 7.2%
twolf 64 8 8K 64KB 64KB 1MB 2 4.4%, 7.1%
vortex 64 8 8K 64KB 32KB 1MB 1 8.1%

minimal ED2P for a given chip area (15 billionλ2)

optimal configuration local minima
benchmark window width bpred L1 I$ L1 D$ L2 $ # inefficiency
bzip2 64 2 4K 8KB 8KB 256KB 0 n/a
crafty 32 2 2K 32KB 32KB 256KB 6 3.0%, 3.4%, 88.1%, 88.6%, 89.1%, 231.8%
eon 48 2 2K 32KB 16KB 256KB 1 48.3%
gcc 64 2 4K 8KB 8KB 256KB 0 n/a
gzip 32 2 2K 32KB 8KB 256KB 1 5.9%
perlbmk 32 2 2K 32KB 32KB 256KB 3 2.8%, 18.8%, 19.8%
twolf 64 2 1K 32KB 32KB 256KB 7 3.5%, 4.7%, 7.7%, 8.5%, 9.4%, 11.2%, 13.2%
vortex 48 2 2K 32KB 8KB 256KB 4 2.7%, 27%, 27.4%, 51.7%

Table 3. Optimal configurations and the number of local minima along with their inefficiency for the
three objective functions.

in that direction to its new design point. The algorithm
finishes when the objective function can no longer be
improved. We expect steepest descent to take fewer it-
erations than random descent since steepest descent, as
its name suggests, chooses the steepest slope at each it-
eration. However, at each iteration the objective func-
tion needs to be calculated for each of the neighboring
design points in order to find the steepest slope. In an
n-dimensional space, this requires2·n simulations per
iteration.

One-parameter-at-a-timeassumes a fixed ordering
of dimensions along which to optimize. In the first
iteration of the algorithm, the objective function is op-
timized along the first dimension while keeping the
other dimensions unchanged. In the second iteration,
the objective function is optimized along the second
dimension, etc. When all dimensions are optimized,
the algorithm starts over again until the objective func-
tion can no longer be improved. We studied the per-
formance of this algorithm for different fixed order-
ings and found that the ordering of the parameters does
influence the performance for individual benchmarks,
but we found no particular ordering that is best for all
benchmarks.

Simulated annealingis the most complicated search

algorithm that (if properly tuned) can avoid getting
stuck in local optima. Similar to random descent, sim-
ulated annealing chooses a random direction around
design pointX. If the objective function improves
along that dimension, the new design pointY is ac-
cepted. If not, the new design point is accepted with

a probabilitye−
FY −FX

T . This probability is a function
of the objective functions in the current and the new
design point, as well as of the ‘temperature’T that
decreases as the algorithm continues. The basic idea
of simulated annealing is to accept worsenings of the
objective function in the beginning of the algorithm
so that a broad area in the design space can be ex-
plored. As the algorithm continues, the temperature
is decreased so that the worsenings that get accepted
also decrease. However, the accepted worsenings are
large enough to jump over local optima.

4.2 Evaluation using detailed simulation
Figure 1 compares the performance of the four search

algorithms using detailed processor simulation. We
quantify the number of simulations, the probability for
the search algorithm to yield a local optimum, and
the average inefficiency of the search algorithm (mea-
sured by comparing the objective function’s value of
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Figure 1. The performance of the four search algorithms: the number of simulations (left), probability
to identify a local minimum (middle) and average inefficiency (right).

the global optimum versus the objective function’s value
of the optimum as identified by the search algorithm).
This was done by running the search algorithms 100
times starting from randomly chosen initial design points.
The results shown in Figure 1 are average numbers
over all benchmarks. We observe that simulated an-
nealing results in significantly more simulations than
the other search algorithms by a factor of 3.5 to 7.9.
The reason is that simulated annealing accepts worsen-
ings in order to explore the design space across moun-
tains. Steepest descent on its turn also needs more
simulations than random descent and one-parameter-
at-a-time. This is due to the fact that steepest descent
evaluates all adjacent design points in order to identify
the steepest slope to go into.

A second important observation that is to be made
from Figure 1 (middle graph) is that all search algo-
rithms, except for simulated annealing, have a non-
zero probability of yielding a local optimum. Depend-
ing on the objective function and the search algorithm,
this probability can be significant, up to 52% (‘mini-
mal ED2P for a given chip area’ and random descent).
Not surprisingly, the probability for yielding a local
optimum increases for ‘minimal EDP’, ‘minimal en-
ergy for near-optimal performance’ and ‘minimal ED2P
for a given chip area’, respectively. Indeed, the latter
objective function showed the largest number of local
minima, and their inefficiencies were also the highest,
see Table 3. These non-zero probabilities for yielding
a local minimum result in inefficiencies on the global
minimum, see graph on the right in Figure 1. For the
‘minimal ED2P for a given chip area’ objective func-
tion and the random descent search algorithm, the in-
efficiency can be up to 14%.

As such, we conclude that random descent requires
the smallest number of simulations, however the prob-
ability for yielding a local minimum is significant, rang-
ing from 9% up to 52% depending on the objective
function. Steepest descent and one-parameter-at-a-time
require more simulations but the probability for a lo-
cal minimum can also be up to 25%. The inefficiencies
for these search algorithms are small however, smaller
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Figure 2. Design space exploration using sta-
tistical simulation in conjunction with search
algorithm for the ‘minimal EDP’ objective cri-
terion.

than 1.2%. Simulated annealing finds the global opti-
mum, however at the cost of significantly more simula-
tions. One-parameter-at-a-time seems to make a good
balance between the number of simulations (less than
steepest descent and simulated annealing) and accu-
racy (the inefficiency being less than 0.9%).

4.3 Evaluation using fast simulation
Until now, we considered the performance of the

search algorithms when used in conjunction with de-
tailed processor simulation. However, given the time-
consuming behavior of detailed simulation it is to be
expected that fast simulation techniques can signifi-
cantly reduce the total simulation time during design
space exploration. The purpose of this section is to
study design space exploration through fast simula-
tion. We use statistical simulation as our example fast
simulation technique. Statistical simulation [5, 12, 13]
collects a number of program statistics from a pro-
gram execution. These statistics comprise information
concerning the instruction mix, the inter-operation de-
pendencies, the basic blocks, the cache miss behavior
and the branch misprediction behavior. Based on these
statistics a synthetic trace is generated that is subse-



quently fed into a statistical simulator. The important
advantage of statistical simulation is that the synthetic
trace is several orders of magnitude shorter than a real
program execution making statistical simulation a very
fast simulation technique—compare the the 100K to
1M instructions in a synthetic trace versus the billions
of instructions in a real program execution (even com-
pared to the 100M simulation points used in this pa-
per, a synthetic trace is very short). Figure 2 shows
the inefficiency for the four search algorithms in con-
junction with statistical simulation. The inefficiency of
statistical simulation is around 2% on average for the
‘minimal EDP’ objective function. We observed sim-
ilar results for the other objective functions, although
with slightly higher inefficiencies (around 4%).

5 Conclusion
This paper studied the shape of the processor de-

sign space under different objective functions and con-
straints. We have shown that local optima indeed exist
and that their inefficiencies can be significant, in sev-
eral cases more than 20% compared to the global op-
timum. We subsequently investigated the implications
of this observation for early design stage exploration
techniques. We evaluated four search algorithms ac-
cording to their overall simulation time and their abil-
ity for avoiding local optima. Of the four algorithms
investigated we conclude that one-parameter-at-a-time
makes a good balance between overall simulation time
and performance of the identified optimal design point.
In addition, we considered statistical simulation as an
example fast simulation technique and conclude that
statistical simulation is accurate enough to be useful
for early design stage explorations. The inefficiency
of the identified optimum is small (only a few percent)
while yielding significant simulation speedups.

We feel this paper only scratches the surface. In
future work we will study (i) how the shape of the pro-
cessor design space is affected by other objective func-
tions, (ii) other design space exploration techniques
(e.g. genetic algorithms and tabu search) that are po-
tentially faster and more accurate than those studied in
this paper, (iii) the applicability of analytical model-
ing [7, 10] and other fast simulation techniques such as
statistical sampling [18] for design space exploration.
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