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1 Introduction and Preliminaries

It is well known that trellis diagrams can been em-
ployed for maximum-likelihood decoding by using the
Viterbi algorithm ([2]). The simpler the trellis diagram
is, the more efficient decoding is. There are several
methods constructing the minimal trellis diagrams for
linear codes ([10]). G. D. Forney defined the trellis
diagram of lattice in [3] and [4], which can be used
for decoding of the code based on lattices. The com-
plexity of the trellis diagram of a lattice is generally
measured by the numbers of states, edges and labels at
every level. Up to now, no efficient methods are found
to construct trellis diagrams with low complexity for
a lattice. However, V. Tarokh extensively studied the
trellis complexity of lattices in [7], [8] and [9], whose
results are profound. After having read Tarokh’s Ph.d
thesis, G. D. Forney thought Tensor product would
be an important tool in studying the trellis complex-
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ity of lattices. For example, we can construct lattices
with arbitrary large code gain by tensor product; Some
interesting lattices including the Barnes-Wall lattices
can be constructed using tensor product. In the paper,
we study the trellis relations among lattices L1, L2 and
their tensor product L1 ⊗ L2.

Denote by R and Z the sets of real numbers and in-
tegers, respectively. Let Rn and Rm×n be the set of
real n-dimensional column vectors and that of m × n
matrices with elements in R, respectively. All vec-
tors are assumed to be column vectors. For integers
x1, x2, · · · , xi, we use (x1, x2, · · · , xi) for the great-
est common divisor and [x1, x2, · · · , xi] for the least
common multiple of x1, x2, · · · , xi. A lattice is a dis-
crete and additive subgroup in Rn. Concretely, For
any linearly independent vectors b1, b2, · · · , bm ∈ Rn,

m ≤ n, the set L = {
m
∑

i=1
kibi | ki ∈ Z, 1 ≤ i ≤ m}

is called a lattice. (b1, b2, · · · , bm) is called a ba-
sis of the lattice L, m the dimension of L. We also
use the notations L(b1, b2, · · · , bm) or L(B) for the
lattice L, where the matrix B = (b1, b2, · · · , bm) is



called a basis matrix of L. If m = n, L is a full
rank lattice. In the paper, we always assume lattices
are of full rank. For vectors u = (u1, u2, · · · , un)t,
v = (v1, v2, · · · , vn)t ∈ Rn, their inner product is de-

fined as 〈u, v〉 =
n
∑

i=1
uivi. u and v are orthogonal if

〈u, v〉 = 0. Denote by span(b1, b2, · · · , bm) the vec-
tor space spanned by the vectors b1, b2, · · · , bm.

For any subspace W ⊆ Rn, there exists a unique
orthogonal complement W⊥, i.e., Rn = W ⊕ W⊥.
Let PW be the projection of Rn in W . This is, for any
x ∈ Rn, PW (x) = w, where x = w + u, w ∈ W ,
u ∈ W⊥. Clearly PW is linear. The lattice L has a
finite trellis if it has n pairwise orthogonal elements.
Let w1, · · · , wn be primitive and pairwise orthogonal
vectors in L, i.e., 〈wi, wj〉 = 0 for 1 ≤ i < j ≤ n,
and L ∩ span(wi) = L(wi) for 1 ≤ i ≤ n, where
span(wi) is the subspace spanned by wi and L(wi)
is the sublattice spanned by wi. Let Wi = span(wi)
and Vi = W1 ⊕ W2 ⊕ · · ·Wi, 1 ≤ i ≤ n. For any
subspace V in Rn, let PV : Λ 7−→ V be the projec-
tion of Λ in V and LV = L ∩ V . The state space at
time i is Σi(L) = PVi

(L)/LVi
, and the label space

at time i is Gi(L) = PWi
(L)/LWi

. For x ∈ L, de-
fine σ(x) = (σ0(x), σ1(x), · · · , σn(x)) and g(x) =
(g1(x), g2(x), · · · , gn(x)), where σi(x) = PVi

(x) +
LVi

∈ Σi(L) and gi(x) = PWi
(x) + LWi

∈ Gi(L),
1 ≤ i ≤ n. A trellis T for L under the coordinate sys-
tem {Wi}

n
i=1 is an edge-labeled directed graph, whose

i-th level nodes are the elements in Σi(L), and whose
edges from the i-th level nodes to the (i + 1)-th level
nodes are {(σi(x), gi+1(x), σi+1(x))|x ∈ Λ}. If we
denote by W the coordinate system {Wi}

n
i=1, then

let si(L,W ) = |Σi(L)| and gi(L,W ) = |Gi(L)|,
ei(L,W ) = |Ei(L)|, 0 ≤ i ≤ n − 1, where
Ei(L) = {(σi(x), gi+1(x), σi+1(x))|x ∈ Λ}. De-
note by N(L,W ) the number of distinct paths from
the initial state to the end state of T . When there is no
ambiguity, we simply denote the above notations by
si, gi, ei and N(L).

Given two vectors v = (v1, v2, · · ·, vm)t ∈
Rm, u = (u1, u2, · · ·, un)t ∈ Rn, definev ⊗ u =

(v1u1, v1u2, · · ·, v1un, v2u1, v2u2, · · ·, v2un, · ·
·, vmu1, vmu2, · · ·, vmun)t ∈ Rm+n. Call v ⊗ u the
tensor product of v and u. For any real a ∈ R, define
a ·v = (av1, av2, · · ·, avm)t. Sometimes we write v ·a
for a·v. It is easy to verify that (v ·a)⊗u = v⊗(a·u).
Similarly, we define the tensor product of two matri-
ces to beB ⊗ B ′ = (b1 ⊗ b′1, b1 ⊗ b′2, · · ·, b1 ⊗ b′n′ , · ·
·, bn ⊗ b′1, bn ⊗ b′2, · · ·, bn ⊗ b′n′) ∈ Rmm′×nn′

,
where B = (b1, b2, · · ·, bn) ∈ Rm×n,
B′ = (b′1, b

′
2, · · ·, b′n′) ∈ Rm′×n′

. For
u, v ∈ Rm, x, y ∈ Rn, by the definition of
the tensor product of two vectors, we have
(u+v)⊗x = u⊗x+v⊗x, u⊗(x+y) = u⊗x+u⊗y,
and 〈u⊗x, v⊗y〉 = 〈u, v〉·〈x, y〉. For any two lattices
L1 and L2, define the tensor product L1 ⊗ L2 =

{
s

∑

i=1
vi ⊗ ui|vi ∈ L1, ui ∈ L2, 1 ≤ i ≤ s, s is an

arbitrary positive integer}. Clearly L1⊗L2 is a lattice.

2 Trellis relations between the lat-
tices L1, L2 and L1 ⊗ L2.

In this section, we investigate the relations of the path
numbers, degree numbers and state numbers in trellis
diagrams of the lattices L1, L2 and L1 ⊗ L2.

Lemma 2.1 [6] Let L ∈ £n have a finite trellis di-
agram under the coordinate system {Wi}

n
i=1, where

L∩Wi = L(wi), 1 ≤ i ≤ n. Then there exists a basis
(b1, b2, · · · , bn) of L such that (w1, w2, · · · , wn) =
(b1, b2, · · · , bn)P , where P = (pij)n×n is an upper
triangular integer matrix. Furthermore, pii is the in-
degree of any vertex in the i-th level of the trellis dia-
gram of L under the coordinate system {Wi}

n
i=1.

It is easy to verify that the former part of the above
Lemma is equivalent to lemma 2 of [1], and the later
part of the lemma can be found in [6]. So we omit the
proof of the above lemma.



Lemma 2.2 Let L1 ⊆ Rn be a lattice with basis B =
(b1, b2, ···, bn) and L2 ⊆ Rn′

a lattice with basis B ′ =
(b′1, b

′
2, · · ·, b

′
n′). Then

(1). L1 ⊗ L2 is a lattice with basis (b1 ⊗ b′1, b1 ⊗
b′2, · · ·, b1 ⊗ b′n′ , · · ·, bn ⊗ b′1, bn ⊗ b′2, · · ·, bn ⊗ b′n′),
i.e., L1 ⊗ L2 = L(B ⊗ B′)

(2). If L1, L2 ∈ £n, then L1 ⊗ L2 ∈ £n, i.e., if
L1 and L2 have finite trellis diagrams, then so does
L1 ⊗ L2.

Proof. (1) can be verified directly. (2) is the lemma
5.2 of [7].

Lemma 2.3 Let L1 be an n-dimensional lattice and
L2 an n′-dimensional lattice. Then det(L1 ⊗ L2) =
det(L1)

n′

· det(L2)
n.

Proof. Let L1 = L(b1, b2, · · ·, bn) and L2 =
L(b′1, b

′
2, · · ·, b

′
n′). Since every lattice has a basis

with Hermite Normal Form (low triangular matrix),
we assume that the matrices B = (b1, b2, · · ·, bn) and
B′ = (b′1, b

′
2, · · ·, b

′
n′) are matrices with Hermite Nor-

mal Forms. Let B = (bij)n×n, where bij = 0 for
1 ≤ i < j ≤ n. Clearly,

B ⊗ B′ =









b11B
′ b12B

′ · · · b1nB′

b21B
′ b22B

′ · · · b2nB′

· · · · · · · · · · · ·
bn1B

′ bn2B
′ · · · bnnB′









.

By the definition of the tensor product, B⊗B ′ is a low
triangular matrix. Hence det(B ⊗B ′) = (det(B))n′

·
(det(B′))n.

Lemma 5.4 of [7] is a special case of the above
lemma. The following two Lemmas can be verified
directly.

Lemma 2.4 Let A,A′ and Q be matrices such that
A = A′Q, and B,B ′ and Q′ matrices such that B =
B′Q′. Then A ⊗ B = (A′ ⊗ B′)(Q ⊗ Q′).

Lemma 2.5 Let S,U ⊆ Rn and T ⊆ Rm be sub-
spaces, L1 ⊆ Rn and L2 ⊆ Rm be lattices. Then

(1). PS⊗T (L1 ⊗ L2) = PS(L1) ⊗ PT (L2), where
PS , PT and PS⊗T are the projections in S, T and S⊗
T , respectively.

(2). If S and U are orthogonal subspaces of Rn,
then PS⊕U (L1) ⊆ PS(L1) ⊕ PU (L1), where PS⊕U is
the projection in S ⊕ U .

Proposition 2.6 Let T1 and T2 be finite trellis dia-
grams of n-dimensional lattice L1 and m-dimensional
lattice L2 under the coordinate systems {Wi}

n−1
i=0 and

{Ui}
m−1
i=0 , respectively, where L1 ∩ Wi = L(wi),

0 ≤ i ≤ n − 1, L2 ∩ Uj = L(uj), 0 ≤
j ≤ m − 1. Let (a0, a2, · · · , an−1) be a basis
of L1 and (b0, b1, · · · , bm−1) a basis of L2 such
that (w0, w1, · · · , wn−1) = (a0, a1, · · · , an−1)P and
(u0, u1, · · · , um−1) = (b0, b1, · · · , bm−1)Q, where
P = (pij)0≤i,j≤n−1 and Q = (qij)0≤i,j≤m−1 are up-
per triangular integer matrices. Let T be the finite
trellis diagram of L1 ⊗ L2 under the coordinate sys-
tem {Hi}

mn−1
i=0 , where Hi = Wα ⊗ Uβ , i = αm + β,

0 ≤ β < m. Then,

(1). N(L1 ⊗ L2, T ) = N(L1, T1)
m · N(L2, T2)

n,
where N(L1 ⊗ L2, T ), N(L1, T1) and N(L2, T2)
mean the numbers of distinct paths in the trellis dia-
grams T , T1 and T2, respectively.

(2). d−i = d′−α · d′′−β , where 0 ≤ i < mn, i =

αm+β, 0 ≤ β < m, and d−i , d′−α and d′′−β denote the
in-degrees of vertices at the i-th, α-th and β-th levels
of T , T1 and T2, respectively.

(3). gi = g′α · g′′β , where 0 ≤ i < mn, i = αm + β,
0 ≤ β < m, and gi, g′α and g′′β denote the orders of
label groups at the i-th, α-th and β-th levels of T , T1

and T2, respectively.

Proof. Clearly, (L1 ⊗ L2) ∩ (Wα ⊗ Uβ) =
(L1 ∩ Wα) ⊗ (L2 ∩ Uβ) = L(wα ⊗ uβ). Since
(w0, w1, · · · , wn−1) = (a0, a1, · · · , an−1)P and
(u0, u1, · · · , um−1) = (b0, b1, · · · , bm−1)Q, (w0 ⊗
u0, · · · , wn−1 ⊗ um−1) = (a0 ⊗ b0, · · · , an−1 ⊗



bm−1)(P ⊗ Q). Hence,

N(L1 ⊗ L2, T ) = det(w0⊗u0,··· ,wn−1⊗um−1)
det(a0⊗b0,··· ,an−1⊗bm−1)

= det(P ⊗ Q)
= N(L1, T1)

m · N(L2, T2)
n.

Because the i-th element in the main diagonal of P⊗Q
is pααqββ , where 0 ≤ i < mn, i = αm + β,
0 ≤ β < m, so d−i = d′−α · d′′−β by the Lemma
2.1. Obliviously,(a0 ⊗ b0, · · · , an−1 ⊗ bm−1) =
(w0 ⊗u0, · · · , wn−1 ⊗um−1) · (P

−1 ⊗Q−1). For any
0 ≤ i < mn, i = αm + β, 0 ≤ β < m, Since the
i-th row of (P−1 ⊗ Q−1) is the tensor product of the
α-th row of P−1 and the β-th row of Q−1, it is easy to
verify that the least common multiple of denominators
of the elements in the i-th row of (P−1 ⊗ Q−1) is the
product of the least common multiples of denomina-
tors of the elements in the α-th row of P −1 and in the
β-th row of Q−1. Hence, (3) follows from (∗).

Remark 2.7 It is also not difficult to prove d+
i =

d′+α · d′′+β , where 0 ≤ i < mn, i = αm + β,
0 ≤ β < m, and d+

i , d′+α and d′′+β denote the out-
degrees of vertices at the i-th, α-th and β-th levels of
T , T1 and T2, respectively.

The result 3 of the above Proposition is in fact
Lemma 5.3 of [7], here we deal with it in differ-
ent view. The following Theorem gives the relation
among the numbers of the states in the finite trellis di-
agrams of the lattices L1, L2 and L1 ⊗ L2.

Theorem 2.8 Let T1 and T2 be finite trellis diagrams
of n-dimensional lattice L1 and m-dimensional lat-
tice L2 under the coordinate systems {Wi}

n−1
i=0 and

{Uj}
m−1
j=0 , respectively, where L ∩ Wi = L(wi),

0 ≤ i ≤ n − 1, L ∩ Uj = L(uj), 0 ≤
j ≤ m − 1. Let (a0, a1, · · · , an−1) be a basis
of L1 and (b0, b1, · · · , bm−1) a basis of L2 such
that (w0, w1, · · · , wn−1) = (a0, a1, · · · , an−1)P and
(u0, u1, · · · , um−1) = (b0, b1, · · · , bm−1)Q, where
P = (pij)0≤i,j≤n−1 and Q = (qij)0≤i,j≤m−1 are up-
per triangular integer matrices. Let T be the finite

trellis diagram of L1 ⊗ L2 under the coordinate sys-
tem {Hi}

mn−1
i=0 , where Hi = Wα ⊗ Uβ , i = αm + β,

0 ≤ β < m. Denote by s′α, s′′β and si the numbers of
states at the α-th, β-th and i-th level of T1, T2 and T ,
respectively. Then,

(1). si = (s′α)m if i = αm + (m − 1).
(2). si = (s′0)

β+1(s′′β) if i = 0 · m + β, i.e., i < m.

(3). si ≤ (s′α−1)
m · ( g′α

d′−α
)β+1 · (s′′β), where α ≥ 1,

g′α is the order of the label group at the α-th level of
T1, and d′−α is the in-degree of any vertex at the α-th
level of T1.

Proof. For any 0 ≤ i < mn, i = αm+β, 0 ≤ β <
m, let

Vi = span(w0 ⊗ u0, · · · , w0 ⊗ um−1, wα−1 ⊗
u0, · · · , wα−1 ⊗ um−1, wα ⊗ u0, · · ·wα ⊗ uβ),
Fα = span(w0, w1, · · ·wα),
Gβ = span(u0, u1, · · · uβ).

If i = αm + (m − 1), then Vi =
span(w0, · · · , wα) ⊗ span(u0, · · · , um−1)
= span(a0, · · · , aα) ⊗ span(L2). So Vi ∩ (L1 ⊗
L2) = L(a0, · · · , aα) ⊗ L2 and PVi

(L1 ⊗ L2) =
Pspan(w0,··· ,wα)(L1) ⊗ Pspan(L2)(L2)
= PFα(L1)⊗L2. Therefore, PVi

(L1⊗L2)/(Vi∩(L1⊗
L2)) = (PFα(L1)⊗L2)/(L(a0, · · · , aα)⊗L2). Con-
sequently,

si = det(L(a0 ,··· ,aα)⊗L2)
det(PFα(L1)⊗L2)

= (det L(a0 ,··· ,aα)
det PFα(L1) )m

= (s′α)m,

and (1) holds.
If i = 0 · m + β, i.e., i < m, then

Vi = span(w0 ⊗ u0, · · · , w0 ⊗ uβ)
= span(a0 ⊗ b0, · · · , a0 ⊗ bβ).

Thus, Vi ∩ (L1 ⊗ L2) = L(a0) ⊗ L(b0, · · · , bβ) and
PVi

(L1 ⊗ L2) = Pspan(w0)(L1) ⊗ PGβ
(L2). So

si = |PVi
(L1 ⊗ L2)/(Vi ∩ (L1 ⊗ L2)|

= (s′0)
β+1 · (s′′β).



Now, we prove (3). For any 0 ≤ i < mn, i = αm+β,
0 ≤ β < m,

Vi = (span(w0, · · · , wα−1) ⊗
span(u0, · · · , um−1)) ⊕ (span(wα) ⊗
span(u0, · · · , uβ)) = (span(a0, · · · , aα−1) ⊗
span(b0, · · · , bm−1)) + (span(aα) ⊗
span(b0, · · · , bβ)).

Then Vi ∩ (L1 ⊗ L2) = L(a0 ⊗ b0, · · · , a0 ⊗
bm−1, · · · , aα−1 ⊗ bm−1, aα ⊗ b0, · · · , aα ⊗ bβ).

On the other hand, PVi
(L1 ⊗ L2) ⊆

(Pspan(w0,··· ,wα−1)(L1) ⊗ L2) ⊕ (Pspan(wα)(L1) ⊗
Pspan(u0,··· ,uβ)(L2)).

Let L = (Pspan(w0,··· ,wα−1)(L1) ⊗ L2) ⊕
(Pspan(wα)(L1) ⊗ Pspan(u0,··· ,uβ)(L2)). Clearly,
|PVi

(L1 ⊗ L2)/(Vi ∩ (L1 ⊗ L2))| ≤ |L/(Vi ∩ (L1 ⊗
L2))|. We determine |L/(Vi ∩ (L1 ⊗L2))| as follows:

Let L′ = L(a0 ⊗ b0, · · · , a0 ⊗ bm−1, · · · aα−1 ⊗
bm−1, wα ⊗ b0, · · · , wα ⊗ bβ).

Then L′ = (L(a0, · · · , aα−1) ⊗ L2) ⊕ (L(wα) ⊗
L(b0, · · · , bβ)). Since (w0, w1, · · · , wn−1) =
(a0, a1, · · · , an−1)P ,|(Vi ∩ (L1 ⊗ L2))/L

′| =
(pαα)β+1.

Since |(Pspan(w0,··· ,wα−1)(L1) ⊗
L2)/(L(a0, · · · , aα−1) ⊗ L2)| = (s′α−1)

m

and |(Pspan(wα)(L1) ⊗
Pspan(u0,··· ,uβ)(L2))/(L(wα) ⊗ L(b0, · · · , bβ))| =

(g′α)β+1s′′β ,

|L/L′| = (s′α−1)
m · (g′α)β+1s′′β .

So, |L/(Vi ∩ (L1 ⊗ L2))| = (s′α−1)
m · ( g′α

pαα
)β+1 ·

(s′′β). Hence,si = |PVi
(L1 ⊗L2)/(Vi ∩ (L1 ⊗L2))| ≤

(s′α−1)
m · ( g′α

pαα
)β+1 · (s′′β). By the Lemma 2.1, d−α =

pαα and so the proof is finished.

Remark 2.9 V. Tarokh gave a very good upper bound
on label complexity function (Theorem 5.1) by Lemma
5.3 of [7]. Theorem 2.8 gives the relations among the
numbers of the states at corresponding levels in trel-
lis diagrams of L1, L2 and L1 ⊗ L2. Could we give
a better upper bound on state and branch complexity
functions by Theorem 2.8?
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