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Abstract - In this paper we present the control of an
induction machine alimented by a PWM three-phase
inverter using a controller with PID structure adapted by
a fuzzy inference system (adaptive FLC-PI). However the
major disadvantage of the fuzzy logic control is the lack
of design techniques, for this purpose we propose an
optimization technique of the fuzzy-adapter parameters
(adaptive FLC-PI-GA). This technique have presented a
good performances compared to the controller which
have parameters chosen by the human operator (adaptive
FLC-PI).
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I. INTRODUCTION

Nowadays, like a consequence of the important progress in
the power electronics and of micro-computing, the control of
the AC electric machines known a considerable rise and a
possibility of the real time implantation applications. The
Induction machine (IM) known by its robustness, cost,
reliability and effectiveness is the subject of several research.
However, it is traditionally, for a long time, used in industrial
applications that do not require high performances, this
because of its high non-linearity and the presence of the
coupling between the stator states and the rotor states. On
the other hand, the direct current (D.C) machine was largely
used in the field of the variable speed applications, where
torque and are naturally decoupled and can be controlled
independently by the torque producing current and the flux
producing current. Since Blashke and Hasse [1,2] have
developed the new technique known as vector control, the
use of the induction machine becomes more and
more(increasingly) frequent. This control can provide the
same performance as achieved from a separately excited DC
machine.

The controllers most often used in the industrial applications
are the PID-type controllers because of their simple
structures and good performances in a wide range of
operating conditions [3]. In the literature, the PID controllers
can be divided into two parts:

In the first part, the controller parameters are fixed during
control operation. These parameters are selected in an
optimal way by known methods such as the poles imposition,
Zeigler and Nichols... etc. The PID controllers of this part
are simple but they have a disadvantage that they are linear
and cannot control systems with changing parameters and

have a high non-linearity [4].

In the second part, the controllers have an identical structure
to PID controllers but their parameters are adapted on-line
parameters estimation of the process. These controllers are
known as adaptive PID controllers.

In control by fuzzy logic, the linguistic description of the
expertise human is presented in the forms of fuzzy rules or
relations for controlling the system. The controllers based on
fuzzy logic (FLC) can be considered non-linear PID where
their parameters are determined on-line based on the error
and its derivative. Controllers FLC need much information to
compensate for non-linearity when the operation conditions
change [ 5 ]. Moreover, if the number of the inputs of the
FLC increases the dimension of the rules base increases.

To overcome the disadvantages of PID controllers and FLC,
we propose in this paper a combination between the two
types of controllers. PID parameters controller can be
adjusted by an adaptive mechanism based on a fuzzy
inference (adaptive FLC-PI) for the speed control of a IM
alimented by an PWM inverter.

However, the major drawback of fuzzy control is the lack of
design techniques[6]. Most of the fuzzy rules are human
knowledge oriented and hence rules will deviate from person
to person in spite of the same performance of the system. The
selection of suitable fuzzy rules, membership functions and
their definitions along the universe of discourse always
involve a painstaking trial-and-error process. Ga most known
and is most largely employed in the technique of global
research with a capacity to explore and exploit a given
operation space using the measurement of the available
performance [7, 8]. Recently of many applications combining
the fuzzy concepts and Ga appeared, particularly, the use of
Ga for the fuzzy logic systems control design. These
approaches thus approaches are called genetic-fuzzy system.
In this way, we propose a technique to optimize the
parameters of fuzzy adapter of controller PI; the controller
resulting from this combination is known on the name:
adaptive FLC-PI-GA in order to apply it to the speed control
of the induction machine.

II INDUCTION MACHINE MODEL

Fig. 1 bellow gives three different reference frames: stator
reference frame (o — f), rotor reference frame (D-Q) and
arbitrary reference frame (d-q).
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Fig. 1: Reference frames and space vector representation

The induction motor mathematical model, in space vector
notation [6,7,8], established in d-g co-ordinate system

rotating at speed @, is given by the following equations.
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Using the d-g co-ordinate system, as illustrated in fig. 1, and
separating the machine variables state vectors into their real
and imaginary parts, the well-known induction motor model
expressed in terms of the state variables is obtained from (1)-
5).

This model is given by equation (6):
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Where o is the coefficient of dispersion and is given by (7):
LZ
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LL,

L.,L,L, stator, rotor and mutual inductances;

R.R, stator and rotor resistances;
,, @, electrical and rotor angular frequency;
, slip frequency (a)L - a)r);
T, rotor time constant (L, /R, );
p pole pairs
I1I. INDIRECT FIELD-ORIENTED CONTROL OF AN
INDUCTION MOTOR

The main objective of the vector control of induction motors
is, as in DC machines, to independently control the torque
and the flux; this is done by using a d-g rotating reference
frame synchronously with the rotor flux space vector [6,7] as
shown in fig. 1, the d axis is aligned with the rotor flux space
vector. Under this condition we have:

l//:q :0 and l//rd :Wr
For the ideal state decoupling the torque equation become
analogous to the dc machine as follows:
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And the slip frequency can be given as follow:
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Consequently, the dynamic equations (6) yield:
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Fig. 2 shows the implemented diagram of an induction motor
indirect field-oriented control (IFOC)[4,6]:
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Fig. 2: bloc diagram of IFOC for an induction motor.



III. THE SPEED CONTROL OF THE IM BY AN
ADAPTIVE CONTROLLER FLC-PI

To overcome the disadvantages of PID controllers and FLC,
we propose in this paper a combination between the two
types of controllers. PID parameters controller can be
adjusted by an adaptive mechanism based on a fuzzy
inference (adaptive FLC-PI). In what follows we show the
method of combination between these two types of
controllers.

A. Gain Adjustment by fuzzy logic

The adjustment of the gains is a technique which acts on the
parameters of PI controller (k,,k ) to tune them during
control of the system. This makes PI controller adapted to
the nonlinear systems [5 ]. The diagram of this technique is
illustrated in fig. 3. The fuzzy adapter adjust the PI
parameters and generates new parameters to him, so that it
adapts to all the operating conditions based on the error and
its derivative.
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Fig. 3: PI control system with fuzzy gain adapter

B. Description of the fuzzy adapter

The parameters of PI controller used in the direct chain
k and k,are normalized into the range [0,1], by using the
following linear transformations [ 3]:

U km% ) (n
k; = (1( ; —k in]i% L kfmin) (12)

The input of the fuzzy adapter are: The error e, the
derivative of error Ae the outputs are: the normalized value
of the proportional action (k;) and the normalized value of
the integral action (/). The fuzzy subsets of the input
variables are defined as follows: NB: Negative Big, NM:
Negative Medium, NS: Negative Small, ZE: Zero, PS:
Positive Small, PM: Positive Medium, PB: Positive Big.
The fuzzy subsets of the output variables are: B: Big, S:
Small.

The membership functions for the inputs e and Ae are
defined in the range [-1,1] (Fig 4), and for the outputs are
defined in the interval [0,1] (Fig. 5).
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Fig. 4 : Membership functions e et Ae .
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The rule base for computing £ and 4 are shown in tables I
and II respectively.

Once the values of k& and k are obtained, the new
parameters of PI controller is calculated by the following
equations:

k]) = (kpmax - kpmiu kp + k])miu (13)

kf = (kImax - kjn]in)k;' + kfn]in (14)

Table I : fuzzy rules base for computing kp

| GN[MN | PN | ZE | PP | MP | GP

e

GN G G G G G G G
MN P G G G G G P
PN P P G G G P P
ZE P P p G p P P
PP P P G G G P P
MP P G G G G G P
GP G G G G G G G

Tableau II : fuzzy rules base for computing &, .

7

Ae ¢ GN | MN | PN | ZE | PP | MP | GP
GN G G G G G G G
MN G G P P P G G
PN G G G P G G G
ZE G G G P G G G

PP G G G P G G G
MP G G P P P G G
GP G G G G G G G

Fig 6 shows the block diagram of the indirect field oriented
control by an adaptive controller FLC-PI.
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Fig. 6: Block diagram of IM control by a PI controller adapted
by an FLC (adaptive FLC-PI)

C. Results of simulation
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To prove the efficiency of the proposed method, we apply the
designed controller to the control of the induction motor. The
induction motor is a three phase, Y connected, four pole, 1.5
kW, 1420min' 220/380V, 50Hz. The configuration of the
overall control system is shown in fig. 6. It mainly consists of
an induction motor, a ramp comparison current-controlled
pulse width modulated (PWM) inverter, a slip angular speed
estimator, an inverse park, an outer speed feedback control
loop and a fuzzy sliding mode speed controller optimized by
genetic algorithm. The machine parameters are given in
appendix.

Fig. 8 shows the disturbance rejection of adaptive FLC-PI
controller when the machine is operated at 200 [rad/sec]
under no load and a load disturbance torque (10 N.m) is
suddenly applied at 1sec, followed by a consign inversion (-
200 rad/sec) at 2sec. The adaptive controller rejects the load
disturbance rapidly with a negligible steady state error.

Fig. 8 shows the parameters variations of PI controller during
control operation.
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Fig. 7 : Simulated results of adaptive FLC-PI controller of IM
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Fig. 8 : parameters variation of the adaptz?;Pl by an
FLC (FLC-PI adaptive).

IV SPEED CONTROL OF IM WITH AN ADAPTIVE
REGULATEUR FLC-PI OPTIMIZES BY AG

A. Genetic Algorithms

GA [11] are search algorithms that use operations found in
natural genetic to guide through a search space. GA use a
direct analogy of behavior. They work with a population of
chromosomes, each one representing a possible solution to a
given problem. Each chromosome has assigned a fitness
score according to how good solution to the problem it is.
GA are theoretically and empirically proven to provide
robust search in complex spaces, giving a valid approach to
problem requiring efficient and effective searching [8,13].
Any GA starts with a population of randomly generated
solutions, chromosomes, and advances toward better
solutions by applying genetic operators, modeled on the
genetic processes occurring in nature. In these algorithms we
maintain a population of solutions for a given problem; this
population undergoes evolution in a form of natural
selection. In each generation, relatively good solutions
reproduce to give offspring that replace the relatively bad
solutions which die. An evaluation or fitness function plays
the role of the environment to distinguish between good and
bad solutions. The process of going from the current
population to the next population constitutes in the execution
of GA.

Although there are many possible variants of simple GA, the
fundamental underlying mechanism operates on a population
of chromosomes and consists of three operations:

Evaluation of individual fitness,

Formation of gene pool (intermediate population)
Recombination and mutation.

The next procedure shows the structure of a simple GA
[7,8,13].
Structure of standard genetic algorithm
Begin (1)
t=1
Initialize Population(t)
Evaluate fitness Population(t)
While (Generations < Total Number) do
Begin (2)
Select Population(t+1) out of Population(t)
Apply Crossover on Population(t+1)
Apply Mutation on Population(t+1)



Evaluate fitness Population(t+1)
t=t+1
End (2)

End (1)
A fitness function must be devised for each problem to be
solved. Given a particular chromosome, a solution, the
fitness function returns a single numerical fitness, which is
supposed to be proportional to the utility or adaptation of the
individual which that chromosome represents.
There are a number of ways of making this selection. We
might view the population as mapping onto a roulette wheel,
where each chromosome is represented by a space that
proportionally corresponds to its fitness. By repeatedly
spinning the roulette wheel, chromosomes are chosen using
stochastic sampling with replacement to fill the intermediate
population. The selection procedure proposed in [12], and
called stochastic universal sampling is one of the most
efficient, where the number of offspring of any structure is
bound by the floor and ceiling of the expected number of
offspring.
After selection has been carried out the construction of the
intermediate population is complete, then the genetic
operators, crossover and mutation, can occur. A crossover
operator combines the features of two parent structures to
form two similar offspring. It is applied with a probability of
performance, the crossover probability (P.). A mutation
operator arbitrary alters one or more components of a
selected structure so as to increase the structural variability of
the population. Each position of each solution vector in the
population undergoes a random change according to a
probability defined by a mutation rate, the mutation
probability (P,,).

B. Design of fuzzy-genetic system

Different approaches have been proposed to automate the
design of fuzzy systems [3,7,8]. Many of these approaches
take the genetic algorithm as a base of the learning process.
A GA was used to optimize the fuzzy logic input
membership functions, the fuzzy rules, the output
membership functions and universe of discourse [3, 4].

B.1. Membership parameters optimization

GA are applied to modify the membership functions. When
modifying the membership functions, these functions are
parameterized with one to four coefficients (fig. 9), and each
of these coefficients will constitute a gene of the
chromosome for the GA.
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Fig. 9: Some parameterized membership functions

B.2. Fuzzy rule base optimization

Different methods are defined to apply GA to the rule base
optimization, depending on its representation. For example,

GA are used to modify the decision table of an FLC, which is
applied to control a system with two input (trial-and-error)
and one input (command action) variables. A chromosome is
formed from the decision table by going row-wise and
coding each output fuzzy set as an integer in 0, 1,..., n,
where 7 is the number of membership functions defined for
the output variable of the FLC. Value 0 indicates that there is
no output, and value & indicates that the output fuzzy set has
the k-th membership.
B.3. Algorithm of optimization by AG of the fuzzy adapter
The application of the GA in the optimization of the FL
controllers can be reformulated as follows:
1. Start with an initial population of solutions that
constitutes the first generation (P(0)).
2. evaluate P(0):
a) Take each chromosome (KB) from the population
and introduce it into the FLC,
b) Apply the FLC to the controlled system for an
adequate evaluation period,
¢) Evaluate the behavior of the controlled system by
producing a performance index to the KB.
3. While the termination condition is not met, do
a) create a new generation (P(t+1)) by applying the
evolution operators (selection, crossover and
mutation) to the individuals in P(t),
b) Evaluate P(t+1)
c) t=t+l.
4. End

The mechanism of the optimization can be represented in fig.
10.
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Fig. 10: Evolutionary learning of an FLC

We propose a genetic learning method for the Data Base
(DB) of Mamdani fuzzy rule base system that allows us to
define:

e The numbers of labels for each linguistic variable.
e The universe of discourse.
e The form of each fuzzy membership function.
The fuzzy adapter consists of two inputs (error and its
derivative) and two outputs (« and g ), where each input has

seven membership functions. These subsets are labelled by
linguistic terms such as: Zero (Z), Negative (N)... etc. We



use GA to search the appropriate parameters values, and to
modify the decisions table of the FLC [3,11], where the
chromosome is formed from the decision table and to code
each membership function by a integer number from 0 to 2,
number 2 indicates the number of membership function
defined for the two outputs [12]. So, we can present the
equivalent code by: Small (S): 1, Big (B): 2 and No output:
0.

In GA, we only need to select some suitable parameters,
such as generations, population size, crossover rate, mutation
rate, and coding length of chromosome [8, 13], then the
searching algorithm will search out a parameter set to satisfy
the designer's specification or the system requirement. In this
paper, GA will be included in the design of sliding mode
fuzzy controller.

The parameters for the GA simulation are set as follows:

(1) Initial population size: 30;

(2) Maximum number of generation: 100;

(3) Crossover: Uniform crossover with probability 0.8;

(4) Mutation probability: 0.01.

In this paper, the performance is measured using the
following criteria.

(5) Minimum integral of squared which is given as follows:

1 2
J = [edr= (] o,) ar (15)
0 0

Fig. 11 shows the tuning scheme of PI controller adapted by
a fuzzy system where their parameters are optimized by the
genetic algorithm.

Fig 10 : the optimization technique Structure
of adaptive FLC-PI by GA.

B.4. Results of optimization

The results obtained for the parameters optimization of the
membership functions are represented in fig. 11 to fig. 14.
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Fig. 11 : Membership Fig. 12 : Membership
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The resulting rule bases from the optimization procedure are
shown in table III and IV. In the tables for example, the first
rule for the output & and g is:

If e is A]] And Ae is Az] So o is B]2 and ﬁ is Bz]

Table I1I: rule bases of the output « .

e Qe A21 A22 A23 A24 A25 A26 A27
A 2 1 2 2 2 2 2
Ay 2 1 1 2 2 2 2
Ay 1 2 1 2 2 1 2
Ay 2 2 2 2 1 2 1
Ags 1 1 1 2 1 2 2
Ags 2 2 1 2 1 2 2
Ay 2 2 1 2 1 2 2
Table I'V: rule bases of the output S

e Qe Agr | Ax | Az | Azg | Azs | Az | Az
A 1 1 2 1 1 1 1
Al 2 2 2 1 1 2 2
Aj; 2 1 2 2 1 1 2
Ay 2 2 1 2 1 2 2
As 2 2 1 1 2 2 1
Al 2 2 1 2 2 2 1
Ay 2 2 1 1 1 2 2

B.5. Results of simulation

The same tests applied for adaptive FLC-PI no optimized
are applied with the adaptive FLC-PI optimized by the GA.
Figure 15 illustrates the variations of PI controller parameters
k, and k during the optimization tests. We notice that the
variations take the same trajectory for the tow controllers
(adaptive FLC-PI and adaptive FLC-PI optimized). Fig. 16
shows the disturbance rejection of adaptive FLC-PI
controller optimized by GA when the machine is operated at
200 [rad/sec] under no load and a load disturbance torque (10
N.m) is suddenly applied at 1sec, followed by a consign
inversion (-200 rad/sec) at 2sec. This controller rejects the
load disturbance very rapidly with no overshoot and with a
negligible steady state error more than the adaptive FLC-PI
which is shown clearly in fig. 21.

Fig. 18 shows the simulation results of the system with
the adaptive FLC-PI optimized by GA in delicate conditions
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such as disturbance application (7,=5xT}y) in the instant
t=0,5sec and application of very low speed reference
(w,=20rad/sec) at t=1sec.

A test of robustness was also carried out by an increase in
300% of the rotor resistance of the machine (R,) (fig. 19) and
of 70% of its moment of inertia (J) (fig. 19). The figures
show that the controller proposed gave satisfactory

performances thus judges that the controller is robust.
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Fig. 16 : Simulated results of adaptive FLC-PI controller

optimized by GA of IM
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Fig. 17 : IM speed control with FLC-PI
optimized by GA in delicate conditions.
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Fig. 18 : the IM rotor speed control with adaptive
FLC-PI optimized by GA for tow different R,
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Fig. 19 : the IM rotor speed control with adaptive
FLC-PI optimized by GA for tow different J.
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Fig. 20 : Simulated results comparison of adaptive
FLC-PI and adaptive FLC-PI optimized by GA of IM.

VI CONCLUSION

In this work we proposed a method of combination between
the fuzzy controller and traditional PI controller in order to
overcome the disadvantages of PI controllers and FLC, this
combination gave us an adaptive controller FLC-PI which
presented satisfactory performances (no overshoot, minimal
rise time, best disturbance rejection). The major drawback of
the fuzzy controller is the insufficient analytical design
technique (choice of the rules, the membership functions and
the scaling factors). That we chose with the use of the
genetic algorithm for the optimization of this controller in
order to control IM speed. GA is used to design an adaptive
FLC-PI controller with optimal parameters which present
better performances compared to the adaptive FLC-PI whose
parameters are chosen by the human operator.



VII APPENDIX

Induction motor parameters

P, [Kw] | 1.5 |I,[A]] 6.31 | L,[H] 0.274
Vo[Vl | 220 |R,[Q] | 4.85 | £, [Hz] 50
n 0.78 | R, [Q] | 3.805 | J, [ke/m] | 0.031
Coso, 0.8 |L.[H] |0.274 | f.[N.m.s/rd] | 0.008
oa[min'] | 1428 | L,, [H] | 0.258 | P 2
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